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SUMMARY

An analytical and experimental evaluation was performed for several promising
structural concepts to provide the basis of minimum total-system-cost for selection
of the best concepts for the design of a hypersonic vehicle wing.

Results, procedures, and principal justification of results are presented in
reference 1. Detailed substantiation data are given herein. Each major analysis
is presented in a separate section. Vehicle loads and temperatures are given with
each structural analysis that influences weight. In addition to the weight analysis,
fabrication cost, performance penalties (surface roughness drag), reliability, and
total-system-cost analyses are presented.

Reference 1. Plank, P. P.; Sakata, I. F.; Davis, G. W.; and Richie, C. C.:
Hypersonic Cruise Vehicle Wing Structure Evaluation, NASA
CR-1568, 1970.



INTRODUCTION

The utility of a hypersonic cruise vehicle depends upon a low structural mass
fraction in a high-temperature environment. Unfortunately, this requirement exceeds
the limits of state-of-the-art structures. The only hypersonic structures flown to date
have been the X-15 research airplane and the ASSET unmanned lifting reentry test
vehicle, both of which are unsuitable for cruising flight.

For the past several years, the NASA Langley Research Center and other
agencies have been investigating promising structural concepts, such as those
discussed in references 2, 3, and 4, and the 1967 Conference on Hypersonic
Aircraft Technology (ref. 5) was devoted to the subject.

An evaluation was performed of promising wing structure concepts to the same
in—-depth analyses, including all known environmental structural considerations that
could affect the four evaluation factors: weight, cost, performance, and reliability.
These factors were then interacted in a total-system-cost study for a system range-
payload capability of 205 billion ton-miles to provide the basis for selecting the best
structural concept for the wing structure of minimum total-system-cost.

Results of this structural evaluation are reported in reference 1. This
reference also includes the procedures and principal justification of results,
whereas this report gives detailed substantiation of the results in reference 1.
Principal analytical and test efforts are presented in separate sections. This
report is bound as three separate volumes.

REFERENCES

2. Heldenfels, R. R.: Structural Prospects for Hypersonic Air Vehicle ICAS
paper, 1966.

3. Plank, P. P.; and MacMiller, C. I.: Analytical Investigation of Candidate
Thermal-Structural Concepts Applicable to Wing, Fuselage, and Inlet
Structure of a Manned Hypersonic Vehicle. AFFDL~-TR-66~15, 1966 (conf).

4. Plank, P. P.: Hypersonic Thermal-Structural Concept Trends. SAE paper
660678, 1966.

5. NASA-SP-148 (Conf). Conference on Hypersonic Technology, Ames Research
Center, 1967.
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SYMBOLS

a Acceleration

CD Drag coefficient

CL Lift coefficient

D Drag

g Gravitational acceleration
H Altitude

Isp Specific impulse

L /D Lift to drag ratio

M Mach number

M. Free stream Mach number

nx,ny,n Load factors expressed in Cartesian coordinate system

z

q Dynamic pressure

T Thrust

W Weight

o4 Angle of attack

ACD Incremental drag coefficient
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Section 1

TRAJECTORY ANALYSIS

The detailed structural concept analyses were conducted for the
relatively large wing section of the Mach 8 hypersonic cruise airplane,
shown in figure 1-1.

The configuration of figure 1-1 is a discrete wing-body airplane
with a low wing that is continuous under the fuselage. A structural
arrangement consisting of an integral hot fuselage and hot wing structure
with separate liquid hydrogen tanks and pressurized compartments suspended
within the fuselage was considered for the structural concept evaluation.
Although only the section of the wing shown in figure 1-1 was thoroughly
analyzed, load and temperature criteria were determined in a gross sense
for the entire airplane. These calculations were required to ensure that
representative thermal, aerodynamic and inertia loads were applied to the
wing section and to ensure that considerations of rib and spar spacings
were included in the wing design.

The following data are used for the hypersonic cruise vehicle:

1. Total wing area 10000 ft°
2. Reference area (rear delta-wing area) 8330 ft2
3. Vertical tail area 574 ft2
4. Engine capture area 306 ft2
5. Zero-lift line (degrees to FRL) 3 deg-

Masses assigned to the various base-line airplane components are
listed below as fractions of the gross takeoff weight, which is
550,000 pounds:

Component Mass fraction
Fuel 0.40
Structure 0.27
Landing gear 0.03
Propulsion 0.15
Equipment 0.05
Payload 0.10




The hypersonic cruise airplane utilizes the flight schedule outlined
in figures 1-2 through 1-lL. Altitude versus velocity is presented in
figure 1-2, indicating the resulting dynamic pressures. In addition,
acceleration and specific impulse data, figures 1-3 and 1-4, are required
for determination of time dependent trajectory data.

Forward accelerations for the cruise airplane, as shown in figure 1-3,
are for the ascent period. A maximum forward acceleration of 0.2-g is
imposed on the trajectory analysis. At initiation of cruise, a normal
climb at constant Mach 8 occurs until maximum L/D is approached, followed
by a 1-g flight attitude at maximum L/D. A constant deceleration of 0.2-g
caused by drag augmentation is used for descent flight. The altitude at
termination of cruise is that which provides the required fuel for descent.
For life analyses, it is assumed that 90 percent of the flights are with
this trajectory. For determination of limit loads due to pressure, inertial,
and thermal effects, a trajectory perturbation (10 percent of the flights)
is assumed to occur at constant Mach 8. This perturbation is a -0.5-g
acceleration normal to the plane of the wing, which is assumed to exist at
the initiation of cruise (Mach 8, g = 1500 psf) resulting from a -l.5-g
(-1.5 + 1.0 gravity = -0.5-g) nose-down maneuver. This -0.5-g condition
is followed by 2.0-g pull-up maneuver (which does not exceed q = 2200 psf)
and is held at constant acceleration until maximum L/D is approached with
a smooth transition to maximum L/D, followed by l-g nominal flight condition
at maximum L/D for the remainder of the cruise period. Negative limit loads
are the critical combination of temperatures and loads occurring during the
nose—-down maneuver, and positive limit loads are the critical combination of
temperatures and loads occurring during the pull-up maneuver. For life
analyses, this limit load trajectory is used for every tenth flight.

Aerodynamic data were determined in the form of Cp, = F (M,a) and
Cp = F (M, C). Incremental drag effects (ACp) due to scale effects, engine
cowls and vertical tail were also generated. These data were based on
extensive aerodynamic analysis of a geometrically similar vehicle
(reference 1-1). It was necessary to apply the appropriate wing area, engine
capture area, and vertical tail area to obtain the proper Cp. The (], data
were used without change.

The aerodynamic data are referenced to the zero-1ift line. Negative
1ift coefficients, required for the analysis of negative g maneuver at
Mach 8, were obtained.

The flight trajectory characteristics of the vehicle were determined,
utilizing the established aerodynamic data, by using the mission analysis
automated procedure of reference 1-2. Given a mathematical model of the
airplane, the program simulates a complete mission within the range of a
given flight profile. A time history of the simulated flight and a final
performance summary are provided for each mission. The following time-based
trajectory parameters were developed: altitude, velocity, Mach number,
dynamic pressure, angle of attack, flight path angle, thrust, drag, vehicle
weight, range and L/D.

1-2



Using the aerodynamic data, both a basic cruise mission and maneuver
perturbation trajectory were developed. The resulting time history of the
trajectory parameters of dynamic pressure, angle of attack, altitude and
Mach number is presented in figure 1-5. The thrust and drag schedule for
ascent and descent is presented in figure 1-6. The thrust and drag schedule
reflects a power-on descent from end of cruise (q = 470 psf) following a
varying dynamic pressure path to an altitude of 40 000 feet. Drag augmenta-
tion, as indicated, was provided to result in a constant deceleration of
-0.2-g. The baseline vehicle weight schedule is presented in figure 1-7.
Both total vehicle weight including fuel and the fuel consumption schedule
are presented. Figure 1-8 indicates the longitudinal acceleration schedule
during ascent, cruise and descent with resulting load factors of +0.2-g.

The baseline vehicle's range in the cruise mission and variation of 1lift to
drag are presented in figure 1-9., The aforementioned vehicle design trajec-
tory data were used to provide time data per mission for the various vehicle
trajectory phases of ascent, maneuver, cruise, and descent. As indicated
in table 1-1, 1.23 hours are required for the basic trajectory and 1.25
hours are required for the basic trajectory plus the maneuver perturbation.
Using the data of table 1-1, 8110 flights were established per 10 000 hours
of life for the basic trajectory and basic trajectory plus perturbation, as
presented in table 1-2. The basic trajectory requires 8978.4 hours and the
basic trajectory plus perturbation requires 1013.75 hours providing an
accumulative total of 9992.15 hours, as shown in table 1-2. However, as
indicated in table 1-2, 9000 (basic trajectory), 1000 (basic trajectory
plus perturbation) and 10 000 hours (life) were assumed for design. There-
fore, using the data of tables 1-1 and 1-2, time data per the 8110 flights
for the various trajectory phases were established, as shown in table 1-3.
Table 1-3 indicates that the maneuver perturbation requires only 16 hours

of a total 10 000 hour vehicle life while the cruise condition requires

4460 hours.

1-3
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TABLE 1-1

TIME DATA PER MISSION FOR VARIOUS VEHICLE TRAJECTORY PHASES

Trajectory phase Basic trajectory Basic trajectory
plus perturbation

Ascent 21.0 min 21.0 min
(0.35 hr) ,
Maneuver - 0.9 min
(0.02 hr)
Cruise 33.0 min 33.0 min
(0.55 hr)
Descent 20.0 min 20.0 min
(0.33 hr)
Total 74.0 min 74.9 min
(1.23 hr) (1.25 hr)
TABLE 1-2

NUMBER OF FLIGHTS PER 10 000 HOURS OF LIFE

Hours
Number of flights Basic trajectory Basic trajectory Accumulative
plus perturbation

8110 8978.4 1013.75 9992.15
For design (9000) (1000) (10 000)
assume
TABLE 1-3

TIME DATA PER 8110 FLIGHTS FOR VARIOUS TRAJECTORY PHASES

Trajectory phase Basic trajectory Basic trajectory Total
(hr) plus perturbation (hr)
(hr)

Ascent 2560 280 2 840
Maneuver 0 16 16
Cruise 4020 440 4 460
Descent 2420 264, 2 684
Total 9000 1000 10 000
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Butt line
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Section 2

VEHICIE LOADS

Net vehicle loads, using the airplane configuration and trajectory, were
determined in a general sense for the entire airframe to ensure that represent-
ative net loads were applied to the wing section and that realistic spar and
rib spacings were included in the wing section design.

Unit load distributions were developed for the hypersonic cruise vehicle
to represent the following influence functions:

1.

Aerodynamic loading — Aerodynamic loadings over the vehicle at the
design condition at Mach 8.0 (-.5g, 2.0g and cruise conditions) were
determined based on oblique shock and Prandtl-Meyer expansion rela-
tionships, references 2-1 and 2-2. Newtonian impact theory was used
for estimating loadings on the nose of the vehicle, reference 2-3.
Load panel points for application of these theories were established
with consideration to vehicle contours. The resultant rigid loading
distributions were transformed to a network model for application to
the stress analysis and the aeroelastic loads analysis.

Tnertia loading — Vehicle weights were distributed to provide an
inertia loading distribution for use in determining design loads.
Appropriate fuel burn-off was considered in deriving the weights
consistent with design loading conditions (—.5g, 2g and cruise).

Elevon loading — loads due to elevon displacement were concentrated

on the control surface. Longitudinal control displacement serves
as a trim device to balance vehicle pitching moments.

Thrust loading — To obtain the loads imposed on the vehicle by the
propulsion system, the following assumptions were made:

a. The propulsion system is integral with the vehicle

b. The inlet is two-dimensional

c. The engine employs a lifting two-dimensional plus nozzle.

d. The vehicle forebody drag is included in the aerodynamic drag
buildup; therefore, the net propulsive thrust is based upon

the change in total momentum from the station at the inlet
ramp to the aft vehicle station.



The network model for application to the stress analysis and aeroelastic
loads analysis is shown in figure 2-1. In addition to the assumptions pre-
sented, it was also determined that the required net propulsive thrust for the
engine at a g = 2200 psf was 318 000 pounds at Mach 8 to provide a vertical
acceleration of 2g. Based on the assumptions made, the stream thrusts at the
various defined stations (figure 2-2) were computed and are shown below:

Stream thrust Magnitude Vector angle,
F 1 027 000 1b Y1 =0°
F, 849 000 1b Y2 =20°
F 1 017 000 1b ¥3 =0°

F_, Gross thrust 1 357 000 1b ¥y = 2, 7k2°

The stream thrust is defined as:
F=mV+ (P-Po)A=PA(L+YM) - Pl
The stream thrust vector angle, y, is positive and is measured in the clockwise
direction from the wing reference line. Resolution of these engine stream
thrust levels into components parallel to and normal to the wing reference line
provides the following:

Station Location

Force 1-2 23 3-4 Net
Fy (1v) -229 000 219 000 338 000 328 000
FN (1) 290 000 -290 000 64 200 6L 200

which result in a net axial force of 328 000 pounds (propulsive) and a net
normal force of 64 200 pounds (lif%ing). From a systems analysis, it was
established that the vehicle angle of attack was 7 degrees (freestream flow)
direction with respect to the wing reference line) during the 2g maneuver.
Therefore, resolution of the axlal and normal propulsive system forces pro-

vides a thrust of 318 000 pounds and & contribution of 104k 000 pounds to the
vehicle 1ifting force.
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The 2g vehicle trim requirement is 62 676 pounds. Vehicle trim associ-
ated with the cruise condition (q = 750 psf) is 17 635 pounds, as shown in
the tabulation below:

Loads
Conditions
22 le 0.2¢
Lay,  total airload, 1b 831 250 389 372 -236 930
c.p. feet 176.0 176.9 176.9
L, total elevon load to trim, lb 62 676 17 635 12 160
cp, feet 256 256 256
n W  total inertia load, 1b -893 926 -4OT 007 224 T70
cg, feet 176.8 176.8 176.8

VEHICLE BALANCE

Vehicle balance was obtained under the system of forces discussed in
the preceding paragraph. Both normsl and axial balance were effected with
the resultant thrust vector approximately through the vehicle center-of-
gravity. (In view of the range of cg motion as fuel is expended, the line of
action of the thrust vector is maintained within this region.) Both normal
and axial balance requirements were observed. A summary of these forces for
all design conditions is contained on figures 2-3 through 2-5. These forces
are listed in the body axis systems.

The individual forces contributing to total loads on the vehicle are
listed on tables 2-1 and 2-2. These forces are listed in both wind and body
axis systems.

The total loads at the cg for the three flight conditions are shown
disgrammatically on figures 2-6 through 2-8. TForces are listed in the body
axis system. These loadings are distributed, as previously discussed, to pro-
vide a loading function for determination of elastic load distributions.
Vehicle balance is inherent in the elastic load solution.

A matrix solution is employed to balance the vehicle under the elastic
loadings. The basic representation includes all external forces contributing
to vehicle attitude and is as follows:

I“'\D
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{PZ} T (o) {a} + [a] [De] [[E] ;PZ% . + :EI'%] + [Aa] %aé} (6e )

where

b=
1l

rigid aerodynamic loading

="
B
1]

aerodynamic influence coefficient matrix

differentiating matrix

o
o]
1]

structural influence coefficient matrix

—
=

[—
il

thermal deflection

&

[

(@)
(5.)

elevon effectiveness

vehicle angle of attack

elevon deflection

Net load is equal to

f _ §
P2 =P  +n iwl + (1) Py
net air
where
nZ = Joad factor
{W} = inertia loading
T = net thrust
{BP; = unit thrust loading
Vehicle balance is maintained through the relations
[1] :PZ} =0
’ net
[x] :Pz =0
net

where [x] represents the distance of each panel load centroid from the cg.
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In the foregoing solution, the differentiating matrix, [Dg], relates
vertical deflections at each panel point to the angular deflection of the
panel. The aerodynamic influence coefficient matrix was developed considering
a one-degree increment in angle-of-attack on each panel using oblique-shock
and Prandtl-Meyer expansion relations.

NET DESIGN LOADS

Rigid-body load analyses were conducted for the 0.5g, 2g and cruise condi-
tions and net panel point loads are presented in tables 2-3 through 2-6.

In addition, aeroelastic analyses were conducted for both the positive
maneuver (2g) and cruise conditions. The lower loadings experienced during the
negative maneuver condition (-0.5g) were not significantly changed because of
flexibility effects.

Net panel point loads (2g and cruise) for both the rigid and elastic wing
computations are presented in tables 2-4 and 2-3, which contain wing loads;
and table 2-5, which compares loads for the fuselage. As indicated in tables
2-4 and 2-5, elastic loads were obtained for the monocoque, semimonocoque
spanwise, semimonocoque chordwise and statically determinant concepts.

The fuselage data of table 2.6 are shown as combined loads on the body
at each longitudinal station to indicate that the longitudinal distribution
of loading is but little influenced by elastic considerations. Distribution
of the net loads between the double panel points at each station was included
in the redundant analysis.

Fvaluation of the elastic load distribution indicates that the magnitude
of the loads at the main wing area does not vary significantly from the rigid
load values. The effect of elasticity is to deflect the trailing edge, aft of
station 2580, upward, thus inducing a negative angle of attack upon the
affected panels. The attendant incremental negative loading necessitates addi-
tional trailing edge down elevon deflection (positive load) for trim. Signi-
ficant changes in loading due to elastic effects are noted in the area of
trailing edge and tip region as well as fuselage nose. Net “loads in the tip
area decrease in local angle of attack. This loss in 1lift is made up by
additional elevon deflection required for trim which further increases trail-
ing edge deflection.

The wide variation evidenced in fuselage loadings (table 2-6) is due in
part to the need for trimming the vehicle under the elastic loading; whereas,
the chordwise semimonocoque structural concept demonstrates the most flexi-
bility in the spenwise direction (table 2-5).

Resultant net shear end bending moment distribution for the specified
cruise and meneuver conditions are shown in figures 2-9 and 2-10 as a func-~
tion of longitudinal station. Discontinuities evident over the aft portion
of the vehicle are due to the concentrated thrust and elevon loads.
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Average pressure loadings over the wing investigation area are listed
for upper and lower surfaces for each design condition on table 2-T7, where
lower surface pressures are further defined in terms of the airload pressure
and ramp (propulsion system). The pressure loading for the entire wing is
shown in table 2-9. TFor the detailed evaluation of structural concepts, the
pressure loadings of table 2-8 were used. The upper surface shields for
serodynemic smoothness requirements and lower surface heat shield panels were
designed for a limit Ap of *0.5 psi.

A history of leading edge pressures during the cruise mission is shown
on figure 2-11. Variations in these loadings during the defined maneuver
excursion are shown on figure 2-12. The lower surface primary load~carrying
panels are designed for the calculated aerodynamic pressures. These pres-
sures are uniformly distributed over the primary-structure panels (based on
complete venting through the heat-shield panels) or with 0.5 psi applied to
the heat shield and introduced at the heat-shield support interface, with
the balance of the pressure uniformly distributed over the structure panels.
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TABILE 2-1
SUMMARY OF STATIC BAIANCE — M8

NORMAL TO WING REFERENCE LINE

Flight condition

Loads, 1b
Cruise lg nominal
-0. 2
o8 & (.92g)

Force

Airload -258 830 767 150 367 502

cp 17h.1 169.3 172.3

Forward ramp 35 400 51 900 17 T0O

cp 197.1 197.1 197.1

Inlet ramp 162 300 238 000 81 160

cp 217.0 217.0 217.0

Duct -197 700 -290 000 -98 890

cp 233.0 233.0 233.0

Aft body 21 900 64 200 21 900

cp 277.0 277.0 277.0

Elevon 12 160 62 676 17 635

cp 256.0 256.0 256.0
Inertia

nW 224 770 -893 920 =407 010

cg 176.8 176.8 176.8
Note: All loads are limit. All stations in feet.




TABLE 2-2

SUMMARY OF NORMAL AND AXTAL BAIANCE AT CG — M8

= .
3 Flight Maneuver Maneuver Cruise .
g, condition n', = -0.5g n', = +2.0g n, = 1.0 nominal
) (-928)
3
5 a, deg- "206 T.O 9.2
&
< q, psf 1 500 2 200
~
Drag, D -11L 880 -325 550 -111 520
Lift, L -240 880 860 660 394 170
g Thrust, T 114 880 325 550 111 520
=
n' W 0 0 0
Inertia
n', W 225 000 -900 630 =412 430
D sina -5 170 39 670 18 020
° ré L cosa -241 500 790 050 367 090
g1 8
Aol Ty 21 900 6l 200 21 900
(0]
£ n,W o2l 770 -893 920 -407 000
&~
& D cosa -113 765 -323 130 ~110 050
&~
0| | L sina 9 970 104 890 63 700
o (]
= 5 Ty 11k 000 328 000 113 000
n, W -10 205 -109 760 -66 650
Note: All loads are limit.
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TABLE 2=~3

NET VEHICIE LOADS — LIMIT (-0.5G MANEUVER LIMIT, RIGID)

Panel Load, Panel Load, Panel Load,
number 1b number 1b number 1b

1 -2 198 16 -1 441 32 -1 700

2 1 770 17 -1 308 33 -1 637

3 -2 151 18 -1 194 3L 3 572

L -3 350 19 -782 35 -227

[ 5 -875 20 -T34 36 -381

6 ~4h2 21 921 37 =595

T 661 22 9 861 38 -730

8 5 537 23 -9 ka3 39 -1 487

9 I 815 24 -6 878 4o -1 611

o 10 12 723 25 1 484 L1 3 244

11 -7 685 26 -398 L2 -405

12 -35 192 27 -522 43 -693

13 -25 123 28 -L468 Ly , -o48

_14 4 389 29 -592 45 2 908

15 4 959 30 -1 008 L6 ~723

31 -1 520 L7 2 255

@Tncludes points 48 — 57 (fig. 2-1)



TABIE 2-h

NET WING LOADS -~ LIMIT

(2¢ MANEUVER)
Elastic, 1b
Panel Rigid,
number 1b Monocogue Semimonocoque Semimonocoque | Statically
(spanwise) (chordwise) determinate
16 3 718 655 3 730 3 Lok 3 Tkl
17 3 3685 3 310 3 386 3181 3 409
18 3 236 3 175 3 252 3 085 3 333
19 3 294 3 281 3 351 3 224 3 Lsh
20 3 002 3 013 3 101 2 971 3 199
21 6 311 6 354 6 519 6 331 6 656
22 20 677 20 738 21 083 20 778 21 ko1
23 -17 885 =17 998 -17 551 -17 961 =17 145
2L -15 154 -15 848 -15 315 -15 572 -15 211
25 -1 629 -1 648 -1 361 -1 223 -1 698
26 877 841 860 765 888
o7 1 265 1211 1225 1 101 1 288
28 1 088 1 038 1 055 935 1 118
29 1 443 1 Lo2 1 440 1 291 1 510
30 2 hhl 2 392 2 511 2 234 2 640
31 3711 3 595 3 841 3 Lo3 L 238
32 4 131 3 620 3 898 3 kb1 L 485
33 3 891 2 553 2 78k . 2 577 2 9k2
3L 12 254 15 415 1 375 15 141 12 953
35 506 478 488 L 527
36 890 8Lt 865 701 91
37 1 Lot 1 331 1 366 1191 1 513
38 1 608 1 491 1 538 1 288 1 822
39 3721 2 951 2 948 2 597 3 601
40 4 035 2 325 2 211 2 1h6 2 382
41 12 238 14 613 13 261 14 138 - 11 745
L2 925 693 649 587 808
43 1 550 688 453 423 907
Ll 2 292 999 657 739 795
45 11 869 13 490 11 818 12 920 10 220
L6 1 719 510 215 481 2
L7 9 161 10 651 9 069 10 306 7 838
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TABLE 2-5

NET WING IOADS — LIMIT

CRUISE (1G)

Elastic, 1b

Panel Rigid,
number 1b Monocogue Semimonocoque Semimonocoque Statically
(spanwise) (chordwise) determinate
16 1 875 1 831 1 858 1 796 1 809
17 1 705 1 666 1 681 1 640 1 651
18 1 627 1 582 1 581 1571 1 580
19 1 592 1 548 1 545 1 540 1 551
20 1 455 1 408 1 412 1 399 1 418
21 2 679 2 597 2 611 2 582 2 636
22 7 695 7 569 7 614 7 5kl 7 683
23 -6 280 6 526 6 L6T 6 581 6 368
2h -5 432 -5 847 -5 797 -5 911 -5 T24
25 -838 -785 -710 ~T700 ~T706
26 L6l Lu6 Lhg 435 L]
27 648 631 627 620 627
28 565 540 536 528 540
29 739 699 695 681 705
30 975 1 164 1 162 1 124 1 191
31 1 398 1 712 1 721 1631 1 809
32 2 116 177k 1775 1 631 1 908
33 2 005 1 428 1 418 1 245 1 489
34 L 396 6 341 6 358 6 705 6 111
35 265 250 2uT 2h1 250
36 461 423 o1 410 431
37 725 658 645 620 670
38 869 751 729 682 783
39 1 891 1 532 1 Lss 1 350 1 540
Lo 2 050 1 4ok 1 315 1 164 1 368
L1 4 480 6 130 6 OTL 6 382 5 795
L2 482 373 343 325 376
L3 812 508 398 359 488
Ly 1 175 TOk 396 525 631
L5 b 435 5 720 5 595 5 907 5 288
46 885 465 388 345 341
g 3 366 L h6T L 311 4 651 L 022

2-12




TABLE 2-6

NET FUSELAGE IOADS — LIMIT

o
o L. Elastic, 1b
Panel Rigid,
n number 1b Monocogue Semimonocoque Semimonocoque Static
d. (spanwise) (chordwise) determinate
1 -3 021| -2 482 -2 540 -2 240 -3 240
2 -12 800| -12 848 -12 933 -12 826 -13 128
3 -2 754} -3 071 -3 421 -3 107 -3 TT5
N Ll 791 338 695 164
5+ 48| -2 0710] -1 785 -2 001 -1 655 -1 935
., | 5+ 49} -2 258] -2 069 -2 126 -1 990 -2 048
o1 7+ 50 -518 =4l -361 =317 -240
2 | 8+ 51 6 938 6 Lot 6 607 1 66k 6 768
519+ 52 5 666 5 13T 5 905 5 901 6 082
2110 + 531 15 845| 15 875 16 061 16 081 16 4o1
Q |11 + 5k | 64 300| 64 723 65 330 65 178 65 669
12 + 55| =81 531| -80 980 -80 029 -80 325 =79 799
13 + 56 | -68 215| -63 378 =67 521 -67 778 -67 091
14 + 57 | =23 606 | =24 231 -23 168 -23 565 -22 596
15 12 023| 11 530 12 260 12 00k 12 465
1 -3 335| =3 016 -2 981 -2 931 -2 627
2 -5 382| =5 305 -5 301 -5 281 -5 276
3 -307 -125 -127 =71 -L0o6
4 134 1 718 1 660 1 793 1 138
5 + 48 481 -505 -565 -463 -620
S 6+ 4 ~694 -698 -725 -698 -763
a1 7+ 50 -132 =165 -165 =167 =167
o | 8+ 51 2 202 2 14k 2 155 2 160 2 168
21 9+52 1951 1 383 1 903 1 89¢ 1 921
2 |10 + 53 5 341 5 204 5 223 3 208 5 287
© 111 + 54| 21 679 21 524 21 618 2 158 21 639
12 + 55 | =30 082 -32 275 -30 128 -30 152 -30 063
13 + 56 | 25 650 ~26 OTT -25 938 -25 969 -25 193
14 + 57 | =10 300| -10 919 -10 7h1 -10 825 -10 528
15 1 8715 1 hh1 1 520 1 483 1 650
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TABLE 2-8

HYPERSONIC CRUISE VEHICLE WING PRESSURES

Limit pressure Ap, psi a, b, ¢
BL 0-120 BL 120-212 BL 212-350
Condition

-0.5-g|+2.0-g|Cruise| -0.5-g{+2. 0-g{Cruise |{-0.5-g | +2. 0-g | Cruise]
Location
Lower surface
structural -0.53 [-0.97 |-0.73 |-0.51 [-1.46 |[-0.97 {-0.54 | -0.98 | -0.73
panels
All heat shields
& upper surface = +0.50 ——

panels

aFor ultimate design pressures, multiply (1.3) (1.5) by limit pressures shown.

Negative values indicate inward-acting pressures;positive values indicate outward-
acting pressures.

CSta. 2274-2366.
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Fuselage Station

analysis and stress analysis.

Figure 2-1. Ioads network wing model

Figure 2-2.

Integral engine: Hypersonic cruise vehicle
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Fuselage station, ft
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-0.5g maneuver condition

Static balance:

Figure 2-3.
/? Fuselage station, ft
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Figure 2-4. Static balance: +2.0g maneuver condition
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Z

nXW = 10 205 1b

Ref X Axis Wind ‘T’
Axis (WRL) Axis
Iy, +.023 0.00
By -.h99 -0.50 n W =224 770 1p
o= 2.60

il

113 765 1b

D cos o
v \L. N\
X

- Ve
\ T = 11:000 1b hd ’l

D sin o =

L cosa = 219 600 1b

i

. ”

L sing =9 970 lb

Z

Figure 2-6. -0.5g maneuver condition: static balance at cg
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|

L sin a = 104 890 1b

Ref X Axis Wind F
Axis | (WRL) Axis
n, 0.24k 0.00
T = 3¢
328 000 1b D sin a = 39 670 1b
{' -

Figure 2-T.

D cos | = 32

Uy
(A
-}

30 1b

nzw = 893 920 1b

v .

n W = 109 760 1b

2g maneuver condition: static balance at cg
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T, sin a = 63 700 1b

Ref X Axis Wind I .
Axis (WRL) Axis
nx -

O.ls 0.00 L ros o = "388 990 1b
nz 0.90 0.92

i = 18 020 1b
/ T = 113 000 1b b sin @ oee

X

- - f} -

o =9 2° \

Figure 2-8.

D

.

cos x = 110 050 1b

n ¥ = 66 650 1b

lg cruise condition:
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Figure 2-12, Wing leading edge pressure (1imit) variations during maneuver
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Section 3
AERODYNAMIC HEATING ANALYSIS
by

D. A. Brogan, F. L. Guard



CONTENTS

Page

GENERAL 3-1
Ieading Edge Heating 3-1
Wing lower Surface Heating 3-1
Wing Upper Surface Heating 3-2
Fuselage Heating 3=2
Radiation Eguilibrium Temperatures 3-2
Transient Thermal Analysis 3=3
ANALYSIS RESULTS 3-3
Radiation Equilibrium Temperatures 3-5

3-iii



3-1

3-5

TLLUSTRATIONS

Wing lower surface leminar to turbulent transition

comparison, cruise condition
Wing upper surface view factors to space

Radiation and equilibrium temperature distribution

for -0.5~g maneuver

Radiation and equilibrium temperature distribution

for 2.0-g maneuver

Radiation and equilibrium temperature distribution

for cruise

Page

3-9
3-9

3-10

3-11

3-12



BL

6(ls’

g

1w

g

us

SYMBOLS

Butt line

Configuration factors for determining the radiation heat
transfer from lower surface to space, from lower surface
to upper surface, and from upper surface to space,
respectively

Gravitational acceleration

Local heat transfer coefficient

Iocal Mach number

Reynolds number evaluated at the boundary layer edge
Temperature

Adiabatic wall temperature

Emittance

Stefan-Boltzmann constant

3-vii



Section 3

AERODYNAMIC HEATING ANALYSIS

GENERAL

Accurate prediction of aerodynamic heating and resulting temperatures is
required for proper materials selection, structural design, and determination
of insulation requirements. Theoretical and empirical methods were employed
to predict aerodynamic heating rates during this investigation. Also, predic-
tion techniques were required for structural temperature determination using
transient structural heating analyses. '

Aerodynamic heating requirements were established at various vehicle loca-
tions as summarized below. In all cases, Hansen's equilibrium air properties
(ref. 3-1) and 1962 Standard Atmosphere data were used in theory evaluation.

Leading Edge Heating

Wing leading edge heating rates were computed by the swept cylinder theory
of Beckwith for leminar flow (ref. 3-2) and the Beckwith and Gallagher theory
for turbulent flow (ref. 3-3).

Leading edge transition from laminar to turbulent flow was based on the
criterion proposed by Bushnell (ref. 3-4) and was assumed to occur at a free-
stream Reynolds number of 130000 based on leading edge diameter. Circumferential
leading edge heating was determined from reference 3-5.

Wing Lower Surface Heating

The flow field over the wing lower surface as positive angle of attack
(windward surface) was obtained from a real gas computer solution (ref. 3-6)
assuming local conditions to be those behind a single oblique shock produced by
a flow deflection equal to the local effective angle of attack. ILaminar and
turbulent heat transfer coefficients were computed from two-dimensional theory
using Eckert's reference enthalpy method (ref. 3-7), and the theory of Spalding
and Chi (ref. 3-8), respectively.

Flow over both the wing lower and upper surfaces was assumed turbulent

whenever the leading edge flow was turbulent. For laminar leading edge flow,



the transition criteria used in analyses resulted from flight heating data
obtained on the ASSET test program (ref. 3-9); however, two other transition
criteria were also evaluated but not used. The second criterion was based on
recent wind tunnel and ballistic range flat plate transition data which were
correlated by Lockheed (ref. 3-10). The third transition criterion evaluated
is by Jillie and Hopkins (ref. 3-11).

Wing Upper Surface Heating

The prediction of heating rates on the leeward wing upper surface is sub-
ject to large unknowns, due to the limited amount of theoretical and experimen-
tal work in this area. For the present study, upper surface flow field and
heating methods were used which yielded good agreement with data obtained from
the X-15 flight test program (ref. 3-12). For leeward upper surface flow, a
Prandtl-Meyer expansion was assumed to the local expansion angle up to a total
flow deflection angle of 8 degrees. For larger expansion angles, constant flow
properties equal to those for an 8-degree expansion were assumed. Turbulent
flow was assumed for all flight conditions. For windward flow on the upper
surface, flow field and transition criteria were employed identical to those
used on the lower surface..

Fuselage Heating

Inviscid flow properties on the fuselage were obtained from a computer
solution of the method of characteristics (ref. 3-13). Pressures along the
upper surface centerline were assumed equal to freestream static, and heating
rates were determined from the theories discussed previously (vis., Eckert,
Spalding and Chi). Flow behind the bow shock along the bottom of the fuselage
area was assumed identical to wedge flow behind a leading edge oblique shock.

The method of characteristics flow field solution was also used to provide
flow properties upstream of the wing leading edge which were used in evaluating
the freestream Reynolds number for leading edge transition.

Radiation Equilibrium Temperatures

Tnitial calculations of the vehicle external surface temperature distri-
butions used for the initial structural concept and material screening were
made assuming radiation equilibrium conditions; i.e., the convective heating
rate to the vehicle surface is balanced by racdiation to space. This assump-
tion is reasonable since the various structural concepts are thin metal skins
with 1ittle capability for storing heat internally. For the wing, where



appreciable heat may be transferred from the lower to upper surface by radiation,
configuration factors were calculated with a formula developed by Hottel

(ref. 3-14). Radiation relief to space was included for all surfaces, with an
appropriate view factor determined by Nusselt's unit sphere method.

Transient Thermal Analysis

Temperatures developed by the radiation equilibrium analysis neglected
thermal capacities of the structure and accounted for radiation within the wing
by a simple two-surface network, neglecting the effects of intervening struc-
ture. As such, the analysis defined the general thermal environment and probable
maximum temperatures for the vehicle external surfaces. To aid in the selection
of the optimum structural concepts with the given thermal environment capability,
thermal analyses accounting for transient effects and the necessary structure
detail were used to examine in detail the comparative structural temperature
and thermal gradients for each candidate concept. The analyses were performed
using the Thermal Analyzer IBM-360 (ref. 3-6) computer program, which affords
direct solution of three-dimensional transient problems involving conduction,
convection, radiation, and heat storage under impressed arbitrary boundary con-
ditions (temperatures and/or heating rates). The transient heat transfer solu-
tion is obtained by converting the physical system into one consisting of lumped
thermal capacities (nodes) connected by thermal resistors, and then using the
lumped parameter, or finite differences, approach to solve for the temperature
history of the system. Boundary conditions included the convective heat fluxes
imposed on external surfaces according to the heating theories outlined above,
as well as radiation relief to the surroundings assumed at 0°F. All internal
radiation was assumed to originate from gray diffusely reflecting surfaces of
constant emittance. Reflected radiation was accounted for by using configura-
tion factors determined from the matrix method of Hottel (ref. 3-15). This
method, in combination with a discrete dissection of the internal structure into
assumed constant temperature nodes, provides the most sophisticated approach to
the radiation/convection heat transfer problem currently available for solution
on the computer. Conduction heat transfer was accounted for in these analyses
whenever applicable. However, for athin skinned structure at wery high tempera-
tures, radiation heat transfer within a structure is usually at least an order
of magnitude greater than conduction heat transfer, and the latter may be
neglected.

ANALYSTS RESULTS

The laminar-turbulent flow transition criteria were evaluated, and the
corresponding lower surface temperature computed. The chordwise temperature
distributions during cruise from the leading edge through the transition re-
gion are shown superimposed in figure 3-1 for wing location BL 30k,

One criterion was based on recent wind tunnel and ballistic range flat
plate transition data which were correlated by Lockheed (ref. 3-10). The
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following empirical equations were recommended for estimating the locations of
the start and end of transition:

Ree: start

0.70
L0Gy0 (#ee/ft) r

100

5.30 + 0.10 M,

Ree, end

0G4 (Ree/ft) 0.35
i

5.95 + 0.08 M

106

where:

Ree/ft unit Reynolds number per foot

Ree,start = Reynolds number evaluated at start of transition

Ree,end Reynolds number evaluated at end of transition

M
e

local Mach number

Subscript e denotes evaluation at the boundary layer edge. Flow properties
on the lower wing surface were computed by wedge theory and also by isentropi-
cally expanding leading edge stagnation line properties to the wedge pressure.
The two flow field solutions resulted in transition locations which agreed
within seven percent.

The transition criterion proposed by Jillie and Hopkins (ref. 3-11) is
based on the assumption that the change in transition location produced by
variations in Mach number and sweep angle is associated entirely with changes
in local unit Reynolds number. The latter is evaluated assuming an isentropic
expansion of leading edge stagnation line properties to the inviscid flat plate
pressure. The zero-sweep freestream transition Reynolds number (27 million)
was obtained from figure 3 of reference 3-11 and is based on extrapolation of
test data obtained at a freestream Mach number of 2.5. Jillie and Hopkins do
not present a method for estimating the location of the end of transition.

The temperature distribution shown in figure 3-1 assumes that end of transition
.Reynolds number is twice the start of transition value.

Comparison of the wing surface temperatures resulting from the three tran-
sition criteria, plotted in figure 3-1, indicates small differences in transi-
tion location compared to the total chord length of 80 feet at this wing loca-
tion. For all three criteria, transition starts within the first 10 feet



after the leading edge. DPeak temperatures at the start of fully turbulent flow
fall within a 100°F range for the three methods, indicating a flat portion of

the curve and good predictability for peak temperatures in this region of the
wing.

Radiation Equilibrium Temperatures

Initial calculations of the vehicle external surface temperature distribu-
tion were made assuming radiation equilibrium conditions. Radiation relief to
space was included for all surfaces, with an appropriate view factor determined

by Nusselt's unit sphere method. Computed view factors for the wing upper sur-
face are shown in figure 3-2.

A schematic of a typical wing location is shown below:

~ = - Rib

An energy balance results in two equations for the two unknown surface
temperatures:

1
(@}

by (Taw,l - Tl) -oeslsﬂhk'— aeglu(Tlh - Tuu)

by (Taw,u - Tu) - 0e€Jdyg Tuh + creglu(fjjll+ - Tu)"") =

|
o

Methods for computing the local heat transfer coefficients (h) and adia-
batic wall temperatures (Taw) were discussed previously. The configuration



factors, Jig, 31y, 8nd3Jyg, determine the radiation heat transfer from lower
surface to space, from lower surface to upper surface, and from upper surface
to space, respectively.

Results of the radiation equilibrium analysis are shown in figure 3-3,
3-4, and 3-5 for the -0.5g, 2.0g and cruise conditions, respectively. The tra-
Jectory perturbations at the end of climb show the effects of peak heating rates
on the upper surface (-0.5g condition) and on the lower surface (2.0g condition).
Temperatures for the transient 2.0g condition average 4OO°F higher than at the
cruise condition. For the -0.5g condition, upper wing surface temperatures are
hotter than lower surface temperatures because of a negative flight angle of at-
tack. However, expansion of the flow over the upper surface results in decreas=-
ing temperatures such that at the aft portion of the wing, upper and lower surface
temperatures are almost identical. The effect of radiation heat transfer between
the wing surfaces may be seen in the unusual temperature patterns on the lower
wing surface, which reflect the different temperature levels on the differently
sloped portions of the upper surface.
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Section L

MATERIAL ANATYSTS

GENERAL

Considering the load-temperature environment and vehicle life charac-
teristics, candidate superalloys and refractory metal materials were eval-
vated. At elevated temperatures the usefulness of a material system 1s limited
by its strength, oxidation resistance, and metallurgical stability. The primary
consideration for a candidate alloy, in this program, is its ability to maintain
strength at its service temperature and perform without serious degradation in

properties throughout cyclic exposures.

Superalloys (nickel and cobalt base) were considered for wing primary g
structure application. Dispersion-strengthened alloys, as well as the nickel |
and cobalt base superalloys, were considered for heat shield application.
Tor leading edge requirements, dispersion-strengthened, end refractory alloys
were evaluated. Fibrous quartz materials were considered for the lower sur-
face thermal protection aspects.

A maberials survey wac conducted encompassing all available materials,
resulting in a parametric evaluation of several leading candidate alloys. It
is important to utilize the correct properties of candidate materials when
comparisons are made. Comparing tensile and creep strength alone is often
misleading when the failure mode is buckling or minimum gage requirements are
imposed. The most significant material property factors were considered in
this parametric analysis. These factors are presented as merit indices for
the leading candidate alloys. Merit indices, as listed below, are devised
to relate materials to various design parameters that provide an efficient
index for materials comparison.

. Physical properties (oz,K, CP, and emissivity) -

° Mechanical properties <Ftu/p’ Fcy/p, and creep)

[ Structural stability during cyclic exposure ( ?iEc )1/2
° Fabricability

° tm - material minimum gage

° Oxidation characteristics

° Metallurgical stability

In addition to using existing data for the evaluation of leading candidate
alloys and final material selectionm, 176 material screening, 330 joining

R N 4

technique, and 576 formability tests were conducted (see section 5).
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The material screening tests were for oxidation and thermal stability
(tensile properties after exposure to elevated temperatures for various periods
of time and metallurgical examination), and emittance.

The Joining technique test evaluation encompassed resistance spotwelding,
spot diffusion bonding, brazing (spot and continuous), TIG welding, electron
beam welding and mechanical fasteners for the various leading candidate materials
and a range of gage thicknesses.

The formability evaluation consisted of bend, flanging-shrink, flanging-
stretch, beading-stretch, and draw form tests for the various leading candidate
materials.

After the final selection of alloys, design-allowable data were established
and used for the structural concept analyses.

MATERIAL CHARACTERISTICS

Materials evaluation and selection were heavily influenced by the general
characteristics of superalloys and refractory metals.

Characteristics of Superalloys

The term superalloy applies to the nickel aﬁd cobalt base alloys, which are
intended for structural use in the temperature range of 10000 to 2000°F. Gener-
ally, the cobalt base alloys are more chemically and metallurgically stable at
higher temperatures than are the nickel base alloys. Superalloys display good
weldability with the exception of the thoria-dispersed strengthened alloys, and
are oxidation resistant except at high temperatures. Oxidation resistance is
dependent not only on velocity, density, and composition and flow pattern of
the oxidizing environment but also on structure, state of stress, and geometry
of the part. Therefore, alloys designed for strength may not have maximum oxi-
dation resistance. When maximum strength is desired, protective coatings should
be considered, usually a light surface oxide for high emittance; however, inter-
granular oxidation in small amounts can have a serious effect on thin sections.
Intergranular oxidation not only reduces the cross section, but can act as a
notch in notch-sensitive materisals. pf the superalloys, the precipitation harden-
able nickel base alloys, such as Rene 41, are the most susceptible to intergran-
ular oxide penetration above 1600°F.

Characteristics of Refractory Metals

For structures to be used at temperatures above 2000°F, refractory metals
must be considered. For example, columbium possesses several properties that
make it attractive for high temperature structural applications. This metal
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and most of its alloys possess excellent fabricability, and its density is less
than that of most of the refractory mterials. However, the use of columbium at
temperatures greater than 1000°F requires an oxidation protective system, since
unprotected columbium reacts with oxygen to form a nonadherent oxide at a rate
dependent on alloy composition, temperature, and environment. At temperatures
greater than 2700°F, the rate is great enough to produce an exothermic reaction,
called autoignition. At lower temperatures, the diffusion of oxygen causes
embrittlement.

Columbium retains structural strength up to temperatures approaching 3000°F,
but the autoignition restricts its maximum useful temperature to approximately
2700 F on a short time basis. Reuse of coated columbium should be limited to
temperatures up to ESOOOF wherein creep is significant. Two fused slurry coat-
ing systems, R512A (Si-20Cr) and R512E (Si-20Cr-20Fe), have been shown to be
effective for high-temperature columbium applications.

Tantalum is useful in the greatest temperature range of any metal because
of its high melting point, retention of ductility at room temperatures, and ex-
cellent fabricability. Its greatest potential as a structural material lies in
the temperature range greater than that possible with columbium.

However, like columbium, unprotected tantalum oxidizes at a high rate. For
this reason, a protective coating must be employed when service temperatures
exceed 1000°F in oxidizing environments. This coating would also inhibit auto-
ignition, which would ocecur at some high temperature (T 22 3000°F).

Two practical coating systems to protect tantalum at 3000°F are Sylcor
R512C (S0-20Ti-10Mo) and R505 (Sn-25A1).

PARAMETRIC ANALYSIS

The materials listed below were evaluated for structural application by
parametric analysis based on published property data and were selected for addi-
tional screening tests.

P Den51ty
Leading candidates (1p/in3) Application
René L1 0.298 Primary structure
Haynes 25 0.330
/

Rene 41 0.298 Heat shields
Haynes 25 0.330

TD NiCr C. JO6

Ta,-10W 0.608 Leading edge
Cb-T752 0.326

TD NiCr 0.306
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Merit indices relating materials to various design parameters provide an
efficient index for comparison as shown in figures 4-1 through 4-9. Figures 4-1
and 4-2 show density-compensated tensile and compressive-yield stresses versus
temperature for the leading candidate materlals. The allowable stresses divided
by the density p show advantages for René 41 in the temperature ranges 1200°
to 1600°F of the major portion of the wing structure.

The compressive buckling weight index, ———flfi , is plotted in figure 4-5
(B, )2
c

versus the applied compressive stress fc for temperatures of 12000, 13000,

and lhOOOF. The index -———fL—I- is an expression of a material's structural
7 (Ee)?

stability characteristic in relation to weight (ref. 4-1). The terms of the ex-

Pression are: P 1is density, E., is compression modulus , and 7 1s the plas-
ticity correction factor.

The curves of figure 4-3 indicate that for a glven compressive load, panels
would weight considerably less if constructed of Rend 41 rather than Haynes 25,
provided minimum gage does not constrain the results.

Other factors considered included fabrication, phy81cal properties, (v, K,
Cp, and emissivity), creep, fatigue, minimum gages, oxidation characteristics,
and metallurgical stability. Coefficient of thermal expansion, thermal conduc-
tivity, specific heat, emissivity, and modulus data are given in figures 4=l
through 4-9.

As an example of elevated temperature considerations, figure 4-10 shows
Ren€ U1 constant-life fatigue diagrams at lhOOOF for various stress levels.
Variations of mechanical properties of Rene 41 from room temperature to 1600°F
are shown in table 4-2 for both A and B probability values (ref. 4-2). Mechan-
%cal propirties for Haynes 25 and TD NiCr are presented in tables 4-3 and L-L

ref. 4-3). -

A typical isochronous stress-strain diagram used for creep analysis is shown
in figure L-11. The temperature environment is 1300°F for the Rend 41 sheet ma-
terial in the 1400°F aged condition. The 4460 hours corresponds to the cruise
condition at the low level of reliability; the other 2 curves correspond to nomi -
nal and high reliability levels. Fc (0.2 percent strain) and the 0.5 percent
strain for tensile creep are 1ndlcated in figure 4-11. Tensile creep data for
Inconel 625, Haynes 25, René/hl, 90 Ta~10W, Cb-752, and TD NiCr are presented
in figures 4-12 through L4-17.



MATERTALS TESTING

Material screening tests were performed in conjunction with parametric
analysis. Existing data, supplemented by data generated under this test inves-
tigation, provided the design allowebles used in the structurel analysis (see
section 5).

Material Property Tests

Oxidation and thermal stability, tensile property, emittance, and metallur-
gical examination tests were conducted for Rene L1, Haynes 25, and TD NiCr during
the materials screening (176 tests). Emittance tests were conducted for the
Cb=-752 and Ta-10W alloys.

Tensile test data for Rene/hl and Haynes 25 included room temperature tests
of solution heat-treated (annealed) material after exposure to the thermal envi-
ronment. The normal aging response to annealed Rene 41 as well as Hayes 25
causes a sharp increase in strength, followed by a drop in strength, as shown in
figure 5-5 of Section 5,indicating an overaged condition. Therefore, it was
found that Rend” 41 is the most favorable material to satisfy elevated tempera-
ture strength requirements, provided it is aged after fabrication to provide
predictable allowables required for design.

Emittance test data obtained over expected temperature ranges for René,hl,
Hayes 25, TD NiCr, Cb-752 and Ta-10W, were used in the thermal structural analy-
ses. Rend 41 emittance test data are shown in figure 5-41 of section 5, and as
a result, an emittance of 0.8 was used for designing with Rene” hl.

Coating Tests for Leading Edge

Initial radiation equilibrium temperature predictions (see.figure 3-4 of
section 3) indicated that refractory metals would be required for leading-edge
applications. Accordingly, screening tests for coated refractory-metal systems
were performed. Two leading-edge material cendidates were fabricated and tested in
& plasma-arc under simulated flight conditions. The first (porous metal), a 50-
percent dense porous powder-metallurgy product of Ta-~10W, was sintered to & Ta-10W
backing sheet. A protective coating of Sylcor R505 (A1-25Sn) was applied to the
assembly and vacuum fired at 1900°F for 1 hour. The second candidate fabricated
and tested was a Ta-10W sheet leading-edge specimen, disilicide, coated with Sylcor
R512C (Si-20Ti-10Mo). This coating was diffused in a vacuum 2580°F for 1 hour.

The two leading-edge material arrangements (porous and sheet) were tested
at 28009, 3000°, and 3100°F for cyclic conditions of temperature to determine
the failure point of each. Six-minute cycles were selected to correspond with
earlier leading-edge tests, ref. h-lL. The leading-edge test results are shown
in figure 5-55 of section 5.



As shown, the sheet concept did not fail after 37 six-minute cycles at
2800°F. Although the porous metal failed after 12 six-minute cycles at 2800°F,
there were indications of improvements by a factor of 2 over earlier tests with
the same type of coating (ref. h-h) The mode of oxidation that occurs in the
porous Ta-10W/R505 concept produces a considerable number of local hot spots.
Failure is a combination of progressive Ta oxidation and thermal stress. The
results indicate that adequate oxidation protection at 3100°F is not practical
with either of the concepts tested, whereas limited oxidation protection is
affordid at 3000°F with the monolithic 90 Ta-10W/R512C concept (37 six-minute
cycles

Structural Joint Tests

Representative structural joints and splices were selected for evaluation
(330 tests). Resistance spotwelding and diffusion spot-bonding were evaluated
for René 41l. For Haynes 25, resistance spotwelding was investigated. Diffusion
spot-bonding, brazed-spot, continuous-braze, and riveted techniques were used
for T NiCr.

The joint technique evaluation results, shown in table 5-10 of section 5,
indicated that higher Jjoint strengths at elevated temperatures are possible for
the resistance spotwelded spec1mens than for the diffusion-bonded specimens.
X-ray inspection of the Rene’ Ll spots indicated crackfree welds; therefore, re-
sistance spotwelding was selected for use in panel fabrication of Rene L41. For
the TD NiCr materials, the riveted specimens provided the highest strengths at
elevated temperatures, as shown in table 5-13 of section 5.

Formability Tests

Four types of formability tests (bend, flanging, stretch bending, and
draw form) were conducted to establish fabrication limits and procedures for
the manufacture of the panel-element and structure designs. In.the tests of
the leading candidate materials, various gages were considered. Procedures
resulting from these tests were defined for design, manufacturing panels, and
costing exercises (see section 5).

MINIMUM GAGE SELECTION

Minimum gage for fabrication of acceptable structural elements, sheet-
thickness availability, and sheet-thickness variation were considered in the
structural concept optimization. Table 4-5 presents minimum metallic material
thicknesses that were selected for the concepts evaluation. The basis of se-
lection was suitability to fabrication processes involved and to damage
resistance,



MATERTAIS SELECTION

Final selections were Rene’ 4kl for the primary structure and the heat shields
below 1800°F), and TD NiCr for heat shields (above 1800°F) and the leading edge.
2

Primary Structure and Heat Shield

Rene” 41 was selected for use in the detailed evaluation of the primary

structure and heat shields (below 1800°F) because of its excellent high-temperature
buckling strength and acceptable fabricability. As indicated in figures L-1,
L-2, and 4-3, Rene” L1 is the most efficient superalloy at the elevated temper-
ature range in which the structure must operate. Because of oxidation, addi-
tional material weight was considered for depth of attack for the operational
temperatures and flight times of this program.

Static oxidation behavior at one atmosphere is used for alloy comparison
and is shown in figure 4-18 (refs. L4-5, 4-6 and 4-7). Depth of penetration per
side for the candidate superalloys is presented, assuming (1) uniform oxide at-
tack, (2) depth of penetration, extrapolated from current dats, is uniform and
linear with respect to time and temperature to the extrapolated points, and (3)
at no stress. These published date have been substantiated by static thermal
stabilily Lesis cunducted in this program. These data arc shown in figure )-18
and discussed in detail in section 5.

TD NiCr was selected for heat shield application above 1800°F, because it
is lower in weight than Rene’ 1l, as discussed in section 20.

Leading Edge

For leading edges, Ta-1OW was originally considered the leading candidate
on the basis of radiation equilibrium temperatures. However, the two-dimensional
thermal analysis described in the section on leading-edge weight indicated a
maximum operating temperature of 2200°F , allowing use of TD NiCr without the
oxidation coating requirement of refractory metals. For service temperatures
from 2300°F, the Cb-752/R512E material was selected; for service from 2500°F to
3000°F, the Ta-10W/R512C material system was chosen.

Figure U4-19 shows the predicted coating life of the Cb-752/R512E system
under cyeclic exposure. These data represent a composite of tests performed at
Lockheed and those reported by the supplier, under various reentry conditions
of time, temperature, and pressure. The majority of these tests were for a
one~hour time-temperature cycle.
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Insulation Materials

Several materials were considered for the insulation required as a part of
the lower surface (outboard) thermal-protection system with heat shields. Of
the three leading candidate low-density silica fibrous materials, two (Micro-
Quartz and Dyna-Flex) are feltlike materials and one, Dyna-Quartz, is a block-
tile material. The following tabulation shows the leading candidate insulation
material characteristics:

Maximum utilization

Density, temperatures,
Tnsulation 1b/£t3 Op
Micro-Quartz 3.5 1600

(3.0 nominal)

Dyna-Quartz 4.5 2750
(heat-stabilized
Micro-Quartz)

Dyna-Flex 6.0 2800

Dyna-Flex was selected because it was the only insulation material that
satisfied the requirements for the application. Micro-Quartz does not satisfy

the maximum temperature requirement for this program (about 2OOOUF), and Dyna-

Quartz is brittle and therefore has doubtful resistance to vibration loads.
Thermal conductivity of Dyna-Flex is shown in figure L4-20.
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Tensile and Creep Properties of .010 & .050 in. René 41 Alloy Sheet from
RT to 2000°F, The Marquardt Corp., Report PR 281-1Q-1, AF 33(657)-8706,
Sept 1962.



TABIE L-1

CANDIDATE MATERIAIS FOR HYPERSONIC

WING STRUCTURES

Wing Leading
Temp. structural Candidate candidate
range application material materials Remarks
To Wing surfaces, | Cobalt base Annealed material with moder-
1800°F primary alloy: ate tensile properties; good
structure, Haynes 25 Haynes 25 | oxidation resistance to
heat shield Nickel base 1800°F
alloy:
“Inco 625
Tnco 718
Hastelloy X
Rene” 41 Rene” 41 Fair weldability, but excel-
lent in all other aspects.
TD Nickel Primary structure: 1600°F;
heat shields; 18000F
TD NiCr TD NiCr Candidate uncoated material
for heat shield application
1800°- | Iower wing Chrome 30
2500°F | surface TD Nickel
leading TD NiCr T NiCr Candidate uncoated material
edge, and for heat shield and leading
heat shield edge application to 2200°F
Columbium
Alloy: Cb-T752 Candidate for leading edge
D-43 application to 2500°F. Moder-
B-66 ately high mechanical proper-
Fs-85 ties preferred. Coating sys-
C-219Y tem is a fused slurry silicide
Cb-T52 (8i-20 CR-20 Fe)
25009~ | Leading edge Tantalum
3500°F alloy:
90Ta,~10W 90Ta-10W | Moderate mechanical proper-
ties; very good with respect
to fabricability. Requires
T-222 oxidation protective system
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TABIE L-2

/
MECHANICAL PROPERTIES OF RENE 41 MATERIAL®

Rene’ 41 sheet and strip (1400°F aged); t < 0.187 inches

Fo.r
Te%lp. 3 n ksi gc Fc;y
F Grain Basis (b) (b) 10° psi ksi
75 L A 25 134.5 31.6 135.0
5 T A 25 140.7 31.6 141.0
75 L B 25 139.7 31.6 140.0
75 T B 25 147.0 31.6 147.0
1200 L A 15 130.7 2L .6 129.6
1200 T A 15 137.0 24 .6 135.4
1200 L B 15 135.9 24 .6 134k
1200 T B 15 143.2 2h .6 1h1.1
1400 L A 15 108.1 22.8 108.0
1400 T A 15 113.3 22.8 112.8
1400 L B 15 112.4 22.8 112.0
1400 T B 15 118.4 22.8 117.6
1500 L A 10 79.3 20.9 81.0
1500 T A 10 83.3 20.9 84 .6
1500 L B 10 82.6 20.9 8L.0
1500 T B 10 87.2 20.9 88.2
1600 L A 10 55.8 17.7 58.0
1600 T A 10 58.5 17.7 60.6
1600 L B 10 58.1 17.7 60.2
1600 T B 10 61.3 17.7 63.2

®Reference L- 3.

b
Ramberg Osgood Parameters, NACA-TN 902.
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TABIE U4-3

DESTICN PARAMETERS FOR HAYNES 25 (L-605) SHEET AT ELEVATED TEMPERATURE

Material Thickness Temp _§ 2ln FO 7 ,?c’ Fcy’

ins. r | &3 ksi [0 psi| ksi

Haynes 25 | 0.020 - [Room| L |B| 9 | 30.82)34.20} 37.00

solution || 0,187 r |B| 9 |55.0931.20] 62.00
treated

sheet * 1200| L |B|11 | 21.84|2k.60]25.40

(1-605) | ¢ 8|1 | 3u.42l2n.60]38.k0

1300] L [B|11 | 21.72]23.90} 25.20

T |B| 11 | 32.05/23.90} 35.90

ool T | B| 11 | 21.08[22.60] 2k.ko

| B| 11 | 29.28{22.60| 32.90

1500| L | B[ 10 | 16.77/20.90| 20.00

r | B} 10 | 26.12|20.90] 29.80

1600 T |B| 10 | 13.89[18.80] 16.70

r | 8|10 | 22.71]18.80| 26.00

1700l T |B| 8 | 11.8416.80]15.00

' e | B] 8 | 1¢.88{16.80| 23.60

1800] © |B| 7 |10.92]1k.00] 1%.20

r |B] 7 | 16.90[1k4.00) 20.50

®Reference L-3.
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TABLE L-i

DESIGN PARAMETERS FOR TD NiCr SHEET AT EIEVATED TEMPERATURE

Material Condition Temp. % ?‘] n FO.T’ Eas Foys
°F &1 8 () ksi 106 psi| ksi

TD NiCr Long l%fe Room | T | A | 10| 71.7 | 2L.0 |74.0
ool sl ECl IS N G X TR X
DuPont 100 | T| A | 10}49.5 | 17.3 [52.0
Ni-20Cr-2Tho, 1500 | T | A | 10]21.7] 12.7 [24k.0
1800 | T | A | 10| 14.k4 9.0 [16.0

2000 | T | A | 10 10.7 7.0 |12.0

2200 | T | A | 10| 7.0 5.5 8.0

2hoo | T | A | 10| 5.2 5.0 6.0

Long l%fe Room | T | A | 10| 59.6| 21.0 |62.6

gxgiggrz 500 | T| A | 10|54.6| 19.5 |57.5

1000 | T | A | 10| Lk1.0| 17.3 [L43.9

1500 | T | & | 10| 17.8| 12.7 |20.1

180 | T | A | 10| 11.7 9.0 |13.3

2000 | T | A | 10| 8.7 7.0 9.9

2200 | T | A | 10| 5.6 5.5 6.5

2hoo | T | A | 10| L.O 5.0 L.8

AEstimated.-
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TABIE L4-5

MATERTAL MINIMUM GAGE FOR STRUCTURAL CONCEPTS

Structural concept Element Min. Thickness,
in.
Monocoque panels
Waffle grid Skin .020 -015§:g
Stiffened plate Stiffener .020 .015
0° x 90° and U45° x L5°
Honeycomb-core Skin (exterior) .015
Sandwich plate Skin (interior) .010
Core .002
Truss-core Skin (exterior) .015
Sandwich Skin (interior) .010
Core . 006
Semimonocoque panels
Tubular Skin .010
Beaded Skin .015
Trapezoidal Corrugation Skin .015
Corrugation-stiffened skin Skin (exterior) .015 -
Skin (interior) .010 ‘
Convex beaded Skin (exterior) .015
Skin (interior) .010
Ribs & spars
Caps Flanged sheet metal .030
Webs Corrugation .015
Heat shields
Corrugation Skin .010
Dimpled stiffened Skin (exterior) .015
Skin (interior) .010
Modular Skin .010

aThese gages applicable to bonded construction.
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Density-compensated compressive yield stress, Fcy/ pr in.

5 x 10°

YA

/

—

/
J

C NiCr

Inconel 625\ \
\5\

<

\ﬁ _— Cb752

\_

Haynes 25 A\_\Q\_ T

| S R

500 1000 1500 2000 2500 3000 3500

Temperature, °F

Figure 4-2. Density compensated compressive yield stress vs temperature
of candidate high temperature materials
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.0005

T T l
P = density, Ib/in.3
N = plasticity reduction factor
E. = compression modulus of
.0004 elasticity, Ib/in2
HAYNES 25 fc = compression stress, lb/in.2
1200°F
1300°F
.0003 1400°F Rene 41
~ o
_\I.uu ]4000': 1300°F
=
P
.0002 £ 4 /
.0001 Wi
A
1200°F
0
0 20 40 60 80 100 120 140 x 10°

fc, psi

Figure 4-3. Compression loads vs weight index for René 41 and Haynes 25
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Themmal expansion coefficient, o, in./in./°F

Figure 4-L.
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400 800 1200 1600 2000 2400 2800

Temperature, °F

candidate materials

3200

Coefficient of thermal expansion vs temperature of
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Figure 4-5. Thermal conductivity vs temperature of candidate materials
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Figure L-6. Specific heat vs temperature of candidate materials
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Figure 4-7. Hmissivity vs temperature of candidate materials
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Figure 4-8. Compressive modulus of elasticity vs temperature of candidate
high temperature materials
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tu at room temp

a

Alternating stress, I , % F

50

40

20

Figure 4-10. Constant life diagram, Rene’ 41 (Kt = 4.0) - 1400°F

T T T T

Material: Rene 41 (F' =170 ksi min)
URT

Specimen: K, = 4.0

- Procedure: Axial loading
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Mean stress, Fm, % FhJ at room temp
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Rene 41 sheet material
(oged at 1400°F) / /
40 Temperature = 1300°F
4460 he
/"
FCY (0.2% e) —t— /// —6-289r\:-\'—-_
32 —— 8920 hr_—
A R
L

//
24 //////‘/7
16 /,7/' / 0.5% Creep __./

Stress, ksi

/

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Strain, e, percent
Typicel isochronous stress-strain diagram for

Figure b4-11.
Rene’ 41 at 1300°F
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SECTION 5

MATERIAL AND PROCESS DEVELOPMENT TESTING

MATERIAL SCREENING TESTS
Material Screening Test Plan

Table 5-1 outlines the material screening test program performed in sup-
port of this contract. Existing data, supplemented by data generated under
this test plan, were used in establishing the design allowables used in the
final analysis.

Description of Tensile Specimen

Room and elevated temperature tensile properties of exposed Rene 41,
Haynes 25 and TD NiCr material alloy systems tensile coupons were machined =
to obtain mechanieal properties data in the transverse grain (or transverse
to the rolling) direction.

Tensile Test Setup and Procedure

Mechanical properties data for the exposed material alloy systems were:
determined using accepted standard laboratory testing procedures and equlpment
A 5000-pound capacity Baldwin Universal Testlng Machine (in compliance with
ASTM E-L designation) and a Baldwin B3M Differential Transformer Extensometer .
(in compliance with ASTM E-83 and E-21 designations for calibration, accuracy,
and attachment) were used to obtain autographic tensile load-strain curves.

The tensile tests were conducted at a head separation rate equivalent to a
straining rate of 0.0005 in. /1n. per minute. Figure 5-1 is a standard one-inch
gage length tensile specimen. A typical tensile test arrangement is shown in
figures 5-2 and 5-3. The method of gripping the tensile specimen shown includes
combined pin and friction clamp attachment at the specimen ends.

Tensile Properties, Oxidation, and Thermal Stability Test Results

Tensile test data for Ren€ 41, Haynes 25, and TD NiCr, including the
effects of thermal exposure on these materials, are presented in table 5-2.



These data reflect room temperature tests of solution heat-treated (annealed)
material after exposure to the environment indicated. The normal aging
response of annealed René 4l and Haynes 25 is noted with a sharp increase in
strength, followed by a drop in strength indicating an overaged condition.
The apparent moduli presented are the "best fit" of the autographic load-
deflection curves. It is obvious that René L1 is the most favorable material
to satisfy the elevated temperature strength requirements of this program.

It is also obvious that Ren€ 41 must be aged after fabrication to provide
predictable allowables required for design. Typical tensile stress-strain
curves for Haynes 25 and Ren€ 41 after 1000 hours static exposure at 15000F
are shown in figures 5-4 and 5-5.

The tensile test data for T NiCr, presented in table 5-2, were determined
at room temperature after exposure to the indicated thermal environments. The
0.2 percent offset yield strengths reported were determined from the autographic
load strain curves using a room-temperature modulus value of 22 x 10® psi.
Typical tensile stress-strain curves for 0.010 and 0.030 gage TD NiCr for
various exposure times and temperatures are shown in figures 5-6 and 5-T.

Metallurgical Examination

Figures 5-8 through 5-18 show microsections of René L1 and Haynes 25
before and after static thermal exposure at 1200°F aud 1500°F for various v
times. It is noted that these data agree well with published data (ref. 5+1),
The René L1 specimens exposed at 1200°F did not show any appreciable amount’
of oxide penetration. However, René 41l specimens exposed at 1500°F for periods
up to 1000 hours showed evidence of intergranular oxidation and apparent alloy-
depleted areas. The Haynes 25 specimens showed a negligible effect due to:
thermal exposure at 1200°F and 1500°F for periods up to 1000 hours.

The TD NiCr tensile coupons were exposed to temperatures of 1500°F,
2000°F, and 2200°F for 500, T50 and 1000 hours as indicated in the schedule
shown in table 5-3. After thermal exposure, the specimens were tested in
tension, and representative coupons were selected for metallographic section-
ing in both the longitudinal and transverse grain directions. The depth of
the oxide surface contamination due to the thermal exposure was measured.
These data are presented in table 5-4. Photomicrographs depicting the con-
dition of the TD NiCr after exposure at 1500°F, 2000°F, and 2200°F are pre-
sented in figures 5-19 through 5-3k.

During the thermal exposure of the TD NiCr specimens at 2200°F, a fluxing
reaction between the coupon and the support rack (high temperature fire brick)
was noted (see fig. 5-35). A chemical analysis (ref. 5-2) was made to deter-
mine the composition of the material at the area of contact between the coupon
and the support rack. The results of the chemical analysis indicated that the
contaminated area of the TD NiCr specimen exhibited a loss of h percent
chromium, whereas the contaminated area of the fire brick exhibited an increase
of 3 percent chromium and a depletion of 5 percent aluminum and 2 percent silicon.
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Metallurgical analyses of specimen sections taken through the areas in contact
with the brick indicated the affected area to be approximately 50 percent of
the original thickness of the material (see fig. 5-36).

An alternate heat treat rack was constructed using high purity aluminum
oxide (A1203) as the base and TD NiCr as the specimen support. This rack was
used to continue the thermal exposure of the 0.010 in. thick TD NiCr specimens
at 2200°F for 750 and 1000 hours. Visual examination of the rack and specimens
after thermal exposure disclosed some discoloration of the rack base and that
a chemical reaction had taken place in the tensile coupon grip area (see flg.

—37) Note that the contamination in the grip area extended approximately
2 inches beyond the point of contact between the specimen and support.

Emittance Test Results

Spectral (6500°A) and total hemispherical emittance data were obtained as
a part of this study by Marquardt Corporation over the temperature ranges indi-
cated in table 5-1.

The Marquardt test apparatus, figure 5-38, uses the hole-in-tube or
indirect method of measuring spectral (65OOOA) and total hemispherical emit-
tance as deseribed in reference 5-3. The specimen material is formed into a
long, thin walled tube per Marquardt drewing X21182 (figure 5-39). A small
hole is drilled through one wall of the tube near the center for optical
viewing. Water cooled copper electrodes are clamped at each end of the tube
for resistance heating to the desired temperature. Two 0.010-inch diameter
wires are spotwelded to the tube, 0.020 inch apart opposite the small hole,
to act as voltage probes. The preoxidized sample is placed inside a bell jar
with optical quality quartz parts for optical temperature measurements. The
bell jar is then evacuated to the indicated partial pressure prior to two
stabilization runs (at maximum temperature) before any optical measurements
are recorded. The blackbody temperature is measured through the small hole in
the tube with a calibrated automatic photomatic pyrometer. Sighting the
pyrometer on the outside of the wall of the tube will give the apparent tem-
perature, which is a function of the emittance of the outer wall.

The following relationships were used to obtain the normal spectral

emittance at 650004
C
e - %(L-L)
N T By

m
If

1 the normal spectral emittance at the measuring wave length

«Q
|

5 = the second radiation constant
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N = the wave length at which the detector measures (in microns)
T = the blackbody temperature (K)
§, = the spectral or apparent temperature (K)

The total hemispherical emittaace will be calculated from the
relationship:

IV = ehto ‘I‘LL
ewmr 1
where:
I = current througg the tube (amperes)
V = voltage drop between potential leads (volts)
r = the radius of the tube (cm)
1 = +the distance between potential leads (cm)
e the hemispherical total emitthance
¢ = DBoltzmann's radiation constant
T = the blackbody temperature of the tube (K)

The emittance curves for the tested materials are shown in figures 5-L40
through 5-44. It should be noted that the emittance curve for 9OTa-lOW/R5120'
material system does not reflect the maximum test temperature as indicated 1in
table 5-1. This was due to an interruption of voltage control through the v
attached probes by eutectic melting (alloy formation between free silicon and the
voltage probes). Several runs were made, using various contaet probes
(including Ta). All results were identical. The chemically aggressive free
silicon in the coating reacted with the probes, resulting in a loss of voltage
control to the specimen.

Figure 5-44 is the total and spectral emittance of preoxidized TD NiCr.
Tt is well to note that this data is comparable with emittance data published

on TD Ni but does not agree with data published on TD NiCr contained in
reference 5-k.

ILeading Edge Testing

Two leading edge concepts were fabricated and tested in a plasma arc
under simulated flight conditions.
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Porous metal concept.- The first concept, a 50-percent dense porous
powder metallurgy product of 90Ta-10W was sintered to a 0.040O-inch thick
90Ta -10W backing sheet to which a 90Ta-10W tube was electron beam welded to
facilitate attachment to the fixture. A protective coating of Sylcor R505
(A1-258n) was applied to the assembly and vacuum fired at 1900°F for one hour.
The coated assemblies are shown in figure 5-45. One additional specimen was
fabricated and sectioned after coating to observe coating penetration by
destructive testing. Figure 5-46 illustrates the general structure of the
impregnated porous leading edge sample. The upper photomicrograph shows the
Al-Sn alloy on the surface with the aluminide below it and the infiltrated
porous 90Ta-10W below the aluminide. The lower picture shows a portion of the
infiltrated 90Ta-10W and the substrate.

Sheet concept. - The second concept fabricated and tested was a sheet
leading edge specimen disilicide coated with Sylcor R512C (Si—2OTi-lOMb) coating.
This coating was diffused in vacuum at 2580°F for one hour. A typical example
of this concept is shown in figure 5-47.

Element testing facility.- The plasma arc test facility at Space General
Corporation (fig. 5-28) was selected to evaluate the two leading edge concepts
under simulated flight conditions. The test facility projected a supersonic
(Mach 2.5), hyperthermal environment that was accurately controlled. A 3-inch
nozzle was used to input a gas flow of T9-percent nitrogen and 2l-percent
OXygen .

Test plan.- The following test plan was formulated for evaluation of ﬁhe;
two leading edge material system concepts (porous and sheet) for cyclic
conditions of temperature to determine the failure point of each material —
coating system at specific levels of temperature. Six-minute cycles were
selected to correspond with earlier work performed at the NASA ILangley
Research Center (ref. 5-5).

Test 1
a. Heat to 3100°F within 30 seconds
b. Stabilize temperature and hold for 6 minutes

c. Cool for 10 minutes (to approximately 300°F)

d. Repeat a through ¢ until visual indication of failure
is observed

Test 2

a. Heat to 2800°F within 30 seconds

b. Slabilize temperature and hold for 6 minutes
c. Cool for 10 minutes (to approximately 3OOOF)

d. Repeat a through ¢ until visual indication of failure 1is

T~ “atre A
UoT L Vo

@]
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Test results.- A summary of test results, identified by model number
coating system, and pertinent test data, are given in table 5-5. A detailed
history of all test parameters is given in tables 5-6 through 5-8.

The results indicate that adequate oxidation protection at 3100°F is not
practical with either of the concepts tested; whereas limited oxidation pro-
tection is offered at 30009F utilizing the sheet 90Ta-10W/R512C concept (37
six-minute cycles). Although the porous metal concept failed after 12 six-
minute cycles at 2800°F, there were indications of improvements (factor of
two) over previously tested concepts. The mode of oxidation that occurs in
the porous 90Ta-lOW/R505 concept produces considerable local hot spots.
Failure is a combination of progressive Ta oxidation and thermal stress.

The sheet concept did not fail after 37 six-minute cycles at 2800°F.

Figures 5-49 through 5-54 are photographs of the two leading edge concepts
before and after cyclic thermal exposure. A comparison of similar tests con-
ducted by NASA (ref. 5-5) on a modified Al-Sn coating and those completed
under this contract are shown in figure 5-55. Although a direct comparison
cannot be made due to the difference in stagnation pressures at the specimen-
jet interface, marked improvements over previously tested concepts are indicated.
(The low pressure tests conducted at Space General are considered more severe
for coatings than those conducted at or near one atmosphere.) o

Additicnal ctudies were made in an attempt to upgrade the porous metal
concept by the impregnation of the porous material with a disilicide coating.
Results from Sylcor indicated that the R512C disilicide coating system is too
chemically aggressive to be feasible in this proposed application. |
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JOINT EVALUATION
Test Plan

Four representative joint-type specimens were selected for evaluation
which encompass those joints needed for the design of subsequent test
components, leading edge test specimens, and representative hypersonic
wing structure components. The joint types, methods of joining, materials,
gages, and test temperatures are outlined in table 5-9.

Description of Specimens

The resistance spotweld and diffusion spot bond specimen configuration
is shown in figure 5-56. The riveted lap joint specimen is shown in %
figure 5-57. The brazed lap joint specimen is shown in figure 5- -58. The
resistance spotweld and diffusion spot bond tension specimen is shown in
figure 5-59. The electron beam weld tee joint and butt joint specimens are
shown in figures 5-60 and 5-61. The fabrication and joining techniques for
these specimens are described below.

Specimen Fabrication and Joining Techniques

Iap joint specimens.- The lap joint specimens were made by shearing
2.0-in. by 4.0-in. coupons and 1.0-in. by 2.0-in. doublers (as required),
deburring, cleanlng,and packaging for joining.

The cleaning procedure consisted of:
Trichlorethylene degrease
Demineralized water rinse
Clean air dry
Chromic-sulfuric acid immersion
Demineralized water rinse
Clean air dry
Seal in polyethylene.

Rene’ L1 aged specimens were aged after assembly. All coupons passed
X-r y"nspection Aglng treatment consisted of heating in air to 1400°F,

a,
AN~ RPN ~ -
ding at LlCJllli_) rature for lu nours, then L,uOll‘ﬁg in air to room ter pﬂratﬂre.
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Riveted lap joint coupons required 0.125-in. and 0.188-in. diameter,
flush head rivets. These rivets were cold headed in plant from TD nickel
wire, due to unavailability of TD NiCr, as follows:

Finished
Wire diam., shank diam., Grip length,
Rivet size in. in. in.
1/8 0.123 - 0.1235 0.1245 ~ 0.1255 0.25
3/16 0.185 - 0.186 0.1870 - 0.1878 0.4o

Head configuration - MS20426

Rivets were formed from "as-received" wire, annealed condition, then
stress relieved after heading (2000°F for 5 minutes). Upsetting was accom-
plished in one-stroke squeeze riveter. Holes were drilled, countersunk, and
reamed before assembly using T15 high speed steel tools.

Coupons and rivets were cleaned before assembly, white glove handled in
clean room and packaged after assembly in polyethylene bags. The cleaning
procedure used was outlined above.

Spot tension specimens. - The resistance spotweld and Aiffusion hond <
tension joint specimens were made by shearing square coupons 2.0-in. by
2.0-in. and die piercing a L-hole pattern.

Doublers (0.030 in.) were required to minimize deflection and to verify
tensile spot strength values. Doublers consisted of 0.030-in. by 2.0-in.
square coupons with normal L-hole pattern but with 3/8—in. diameter center
hole. These doublers were resistance spotwelded to the 0.015-in. gage coupons.

Aged specimens were made by aging (14O0°F for 16 hours) after joining;
solution treated (annealed material) coupons were X-rayed before and after
aging.

Tee and butt joint specimens -~ The electron beam welded 90Ta-10W tee and
butt joint specimens were made by shearing coupons (1.0 in. by 12.0 in. and
4.0 in. by 4.0 in.). The cleaning procedure used was the same as that outlined
for the lap joint specimens. A1l welds passed X-ray inspection.
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Test Setup Equipment and Procedures

Lap shear tests, -= The lap shear joint specimens were tested at room and
elevated temperatures. A typical elevated temperature joint test arrangement is |
shown in figure 5-62. The room temperature setup was essentially the same. ‘
Both the room and elevated temperature joint specimens were loaded by means of
combined pin and friction gripping. A loading rate of 5000 pounds per minute
was used for these tests. Specimen test temperatures were achieved by means
of radiant heating (Tungsten filament quartz lamps, type 1000T3/CL/HT, and
gold plated reflectors, ResearchIncorporated Type AU5-212). Power to the heat
lamps was supplied by a 100-ampere, 480-volt Thermac ignitron power controller
unit. Chromel-alumel thermocouples were attached to the test specimens by
the capacitance discharge method. One control thermocouple was used to regu-
late the power to the radiant heat lamps for maintaining specimen test tem-
peratures. The remaining thermocouples were used for monitoring and recording
specimen temperature by means of a Brown strip chart recorder.

A typical test arrangement for the riveted joint specimens is shown in
figure 5-63. A Class B-1 averaging differential transformer type extensometer
is shown attached to the specimen for the purpose of establishing the joint
vield strength. The yield load for this specimen configuration was determined
by repeatedly loading and unloading the specimen to successively greater load
levels until a permanent joint deformation of 0.005 in. was obtained. These
data were obtained from the reduction of autographic load-deflection curves

produced by a standard drum type recorder in accordance with the MIL-H-5
committee guidelines.

Spot tension tests.- A typical spot tension test setup is shown in
figure 5-64. The specimen is shown mounted in the compression bay of a
5000-pound capacity Baldwin Universal Testing Machine. The test fixtures,
located on either side of the specimen, consist of a base and four posts
which apply a bearing load to the specimen face sheet opposite the test
fixture. This arrangement produces a tensile load at the weld located in
the center of the specimen. Test loading was applied at a rate of approxi-
mately 5000 pound per minute.

Joint test results.- A summary of the lap joint test data for, Ren€ 41
and Haynes 25 material alloy systems is given in table 5-10. The values
listed in this table are an average of the results of five specimen tests.

A listing of each test specimen result is presented in tables 5-11 and 5-12
which show the scatter in the test data obtained for these two material alloy
systems.

A summary of the lap joint test data for TD NiCr is given in table 5-13,
and represents averaged values for five specimen tests per condition. A
listing of each test specimen result is presented in table 5-16.
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The joint technique evaluation results, shown in table 5-10, indicated
that higher joint strengths at elevated temperatures are possible for the
resistance spotwelded Specimens than for the diffusion-bonded Specimens.

X-ray inspection of the Ren€ 41 spots indicated crackfree welds; therefore,
resistance spotwelding was selected for use in panel fabrication of Rend L1,
For the TD NiCr materials, the riveted specimens brovided the highest strengths
at elevated temperatures, as shown in table 5-13.
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FORMABILITY TESTS

Four types of forming tests were conducted to establish fabrication limits
for the manufacture of the panel element and structure designs. The forming
test schedule is outlined in table 5-17 and lists the materials, gages, test
conditions, and total number of tests conducted. A detailed description of
each of the forming tests is given below along with recommended procedures
resulting from these tests.

Room Temperature Bend Tests

Room temperature bend coupons (fig. 5-65) were sheared to 1.0-in. by
3.0-in. rectangular blanks. Edges were left as-sheared. Half of the coupons
were cut with length parallel to rolling direction of sheet; the other half
of the coupons were cut with length normal to rolling direction of sheet.
Bends were formed in conventional mechanical brake with strain rate control!
using radius punch and open channel die. Each coupon was bent in two places
in opposite directions. Minimum bend radius, effect of grain direction, edge
and surface effect, and spring back for each condition of forming were deter-
mined, as follows: ”

Punch radii - 0.010, 0.015, 0.031, 0.045, 0.061, 0.0(6, 0.090, 0.125 inch
Channel die width - punch diameter plus 2-1/2 times metal thickness f
Channel die radii - 2-1/2 times metal thickness

Rate - from 0.05 to 1.50 in. per minute

Bend angle - 110° closed before spring back

Recommended Minimum

Material Gage, Bend Radius

Alloy in. Longitudinal® TransverseP
Haynes 25 0.010 - 0.125 1.0 t 1.0 t
René 41 0.010 - 0.025 1.5 % 1.5 %
René 41 0.030 - 0.100 2.0 t 2.0 t
T NiCr 0.010 2.0 t 2.5 t
TD NiCr 0.030 2.5 t 3.0 t
Cb-T752 0.010 - 0.060 1.5 t . 2.0t
Ta-10W 0.010 - 0.060 1.5 t 1.5t

@Normal to rolling direction of sheet.
bParallel to rolling direction of sheet,

All "good" bends were dye penetrant inspected, sectioned, and examined
for microscopic cracking at 120 x magnification.
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Room Temperature Flanging Tests

Room temperature flanging specimens (figs. 5-66 and 5-67) were prepared
by shearing 3.50-in. wide strips, rough blanking contour, drilling pin holes,
then trace milling final size shrink and strength flange coupons. All coupons
were cut so that bend would be parallel to rolling direction of sheet (trans-
verse bend). Forming was done on standard flanging tools made of hardened
steel and with bend radii to match bend radii determined from bend tests.
Edges of coupon blanks were deburred but not polished. Forming was accomplished
using 3/8-in. thick Adiprene ID 16TA urethane elastomer vulcanizate sheet as
a cover, form blocks IC 31-47L1-6703-115 and -116 for tooling, and in a
41 kiloton, 10 ksi Verson-Wheelon forming press. Forming pressures ranged
from 4500 to 7500 psi. Coupons were photo gridded (0.100 in. line spacing at
45 deg and 90 deg) before forming and elongations were measured from inner B
mold line to edge of flange. Specimens were prepared as follows:

Recommended elongation

limits,

Material Gage, Bend percent
alloy in. radius Shrink Stretch

Ta-10W 0.010 - 0.C60 1.5 t 1.5 1k.0
Bene h1 0.010 - 0,025 1.5 t 1.0 22.5
Rene 41 0.030 - 0.060 2.0 t 1.5 30.0
Haynes 25 0.010 - 0.060 1.0 t 2.0 5.0
TD NiCr 0.010 2.5 ¢ 1.0 10.5
TD NiCr 0.030 3.0 ¢ 1.0 12.5

Room Temperature Draw Forming Tests

Coupons were made by shearing 2.5-in. by 2.5-in. squares from sheet stock
(fig. 5-68). Corners were removed as required by hand shearing. Edges of
blanks were deburred. Draw forming results were obtained by Lockheed Aircaaft
Corporation-modified Ericson cup tests. Previous values were substantiatead
for single draw operations.

Summary of draw forming:

Material Gage, Draw depth to
alloy in. blank diam. ratio, %

Ta-10W 0.010 - 0.030 90

Cb-752 0.010 - 0.030 80

Rene' 41 0.010 - 0.020 60

Rene L1 0.025 - 0.030 80

Haynes 25 0.010 - 0.060 100



Room Temperature Stretch Beading Tests

Room temperature stretch beading test coupons were prepared by shearing
3.0-in. by 5.0-in. blanks, deburring edges, and forming by high pressure in
forming tool equipped with positive lock draw ring (fig. 5-69). Limits of
forming in annealed condition were established; parts were then interstage
annealed and second forming, third forming, and fourth forming stage limits
determined. Annealing was accomplished in two different methods. One method
involved encasing blank in a sealed stainless steel envelope so that annealing
in air furnace could be accomplished without oxidation of coupon; the envelope
was removed for final forming stage. A second method utilized hydrogen
atmosphere bright annealing furnace (not a production facility). No appreci-
able forming differences between the two methods was noted.

Forming - See room temperature flanging tests above.

Tooling - IC 31-4741-6703-117 (Tungsten carbide facing applied to provide
positive grip at interfaces under draw ring).

Summary of stretch beading:
Recommended total

Material Gage, No. of process max. elong.,
alloy in. anneals® percent
Haynes 25 0.010 - 0.025 1 50.0 ,
Haynes 25 0.030 - 0.050 1 58.0
Rene U1 0.010 - 0.020 1 17.0
Rene L1 0.010 - 0.020 2 25.0
Rene L1 0.010 - 0.020 3 30.0
Rene b1 0.025 - 0.030 1 20.0
Rene U1 0.025 - 0.030 2 30.0
Rene U1 0.025 - 0.030 3 36.0
Rene L1 0.025 - 0.030 L 40.0

»

a 1950° - 1975°F - 15 minutes; cool to 1000°F within 3 seconds.
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TABIE 5-2

MECHANICAL PROPERTIES TESTS OF THERMALLY EXPOSED MATERIALS

Material Gii?’ H:if 22;§2iie izQ’ izg’ %lei;?%‘ ;EE’
hr °F
.015 | 2k90-6- As received| 143 72 L4 29 X 10
8512
250 | 1200 | 192 148 12 29
500 20k 158 12 29
750 203 | 157 1k 30
1000 Y 197 159 10 30
250 | 1500 | 166 11h 7 29
500 152 108 L e8
750 143 105 L 32
1000 14o 102 2 32
Rene Ll
.060 | TV361 As received| 1L9 75 38 o7
250 | 1200 | 188 150 10 30
500 197 152 9 35
750 189 162 um 33
1000 191 162 6 31
250 | 1500 | 179 | 13k 5 3k
500 168 131 2 35
750 161 123 3 33
1000 157 120 2 31
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TABLE 5-2,- Continued

MECHANICAL PROPERTIES TESTS OF THERMALLY EXPOSED MATERTALS

Material G?if’ Hzif 22§§2iie E§?> izzﬂ %leigf§' ;Eg
hr °F
.016 | B16506 As received | 139 71 3k 36 x 16°
250 | 1200 | 11k 85 10 33
500 119 97 6 32
750 132 1L 4 34
1000 133 117 L 31
250 | 1500 | 119 oL 9 37
500 113 72 L 26
750 121 76 L 3k
1000 126 75 5 35
Haynes 25
.030 | 51795 As received | 151 75 36 33
250 | 1200 | 115 86 7 35
500 128 99 8 33
750 140 117 5 37
1000 148 126 3 32
250 | 1500 | 148 79 13 3k
500 15k 83 8 34
750 152 | 83 5 33
1000 150 89 36
As received | 148 69 57 32
250 | 1200 | 131 86 18 35
500 132 98 7 33
750 12k 110 i 35
060 | 1866 1000 143 121 36
1931 250 | 1500 {125 86 9 35
500 132 ‘9 5 32
750 130 78 b 31
1000 130 79 3 3L
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TABLE 5-2. - Continued

MECHANICAL PROPERTIES TESTS OF THERMALLY EXPOSED MATERIAILS

. Gage, Heat Thermal Fioy | Fiuy |% elong.| Eg, |Coupon
Material in. no. exposure kzlll k?lr (1 in.) psi no.
hr Op
As received| 132 | 87.7 1 |eex108 33-1
As received| 133 88.9 14 -2
As received| 133 88.3 14 -3
500 | 1500 | 126 87.6 1L -4
500 126 8T7.3 17 -5
750 122 83.0 16 -6
750 118 81.9 14 =T
1000 122 84.0 15 -8
1000 120 83.6 1k -9
500 | 2000 | 119 82.9 10 =10
D NiCr | .010 | 2870 500 Lk 82.5 7 -1
750 108 66 .7 5 =12
750 108 T34 9 =13
1000 ¢ 102 72.9 5 -1k
1000 75.9| 71.2 NA t-15
500 | 2200 | 115 T1.1 10 -16
500 113 | 2.7 | 19 Y-17
750 86.6| L48.2 6 X=-3
750 92.1] 51.k4 122 -l
750 89.7| 52.6 10 -5
1000 47.51 L41.0 (1) -13
1000 81.3| 43.6 9 *-1&
1000 80.9 48.0 IS Y -15

" 8Failed outside specimen gage length,
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TABIE 5-2,- Concluded

MECHANICAL PROPERTIES TESTS OF THERMALLY EXPOSED MATERTAIS

Thermal
i Cage, | Heat Fiy | Fyos | $ €long.| E,, |Coupon
veterial | . no. exposure | A | W7 (1 n.) psi | PO
hr OF
AS received| 131 | 86.2 15  |22x100]| 30-1
As received| 130 85.0 17 -2
As received| 132 85.8 16 -3
500 | 1500 | 125.6(100.9 16 -4
500 124.2| 81.3 17 -5
750 125.2| 82.2 17 -6
750 125.2} 81.8 19 =T
1000 126.8 | 82.4 19 - =8
1000 126.9| 83.9 17 =9
TD NiCr .030 2855 500 | 2000 | 125.5| 79.9 19 -10
500 124 .71 80.1 18 =11
750 123.11 80.1 12 -12
(50 123.8§ 79.2 i7 =13
1000 L (v) | (b) () -1h
1000 (b) | (v) (b) =15
500 | 2200 | 121;1{ 78.6 18 =16
500 121.2| 78.6 16 -17
750 (c) | (e) (c) -18
750 () | (e) (c) -19
1000 (c) | (e) (¢) ' ~20
1000 (c) | (c) (c) ‘ "-21

bNo data - specimens failed during test.

®No data - excessive degradation due to thermal exposure; specimens
impossible to test.
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TABLE 5-3

THERMAL EXPOSURE SCHEDULE FOR TD NiCr TENSILE SPECIMENS

Specimen identification

Alloy Thickness, Exposure time, Exposure

code in. hrs Temp.,
500 750 1000 Op

33 0.010 33-k, 5 336, T 33-8, 9 1500
33-10, 11 33-12, 13 33-14, 15 2000
33-16, 17 33-18, 19 33-20, 21 2200
30 0.030 30-k4, 5 30-6, T 30-8, 9 1500
30-10, 11 30-12, 13 30-1k4, 15 2000
30-16, 17 30-18, 19 | 230-20, 21 2200

Spe01mens of 0.030-in. thick material that were contaminated from the brlck ‘

supporting rack were not exposed at 2200°F for 1000 hours.
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TABLE 5-L4

THICKNESS OF SURFACE OXIDE ON TD NiCr SPECIMENS AFTER THERMAL EXPOSURE

Sperimen Thermal exposure Surface oxide
identirzcation Time, Temp. , thicl_mess,
hrs Op in.
33-1 As received -
33-9 1000 1500°F 0.0002
33-13 750 2000°F 0.0002
33-15 1000 2000°F 0.0002
33-16 500 2200°F 0.0003
33-19 750 2200°F 0.0003
33-21 1000 PP00°F 0.0005
30-1 As received -
30-8 1000 1500°F NIL
30-14 1000 2000°F 0.00005

5-21




s uswToads JO J23USD 3B DPIUTRIQO SSOWOTU3 UT mmgmgom

santred - 4,000t = L
qe sOTOAO 23NUTW-XTS LE €00°0- 0 0'6EC 0°6EL 0zEET IR 9
santted - 4,008C = L
1e saT0A0 93NUTW~XTS e . . . ¢
TeuoTaTpPe OT snid 600°0 71°0 9°89¢ 0°69¢2 009°¢ ol 7S
soToL0 S3NMUTW-XTS g €00°0- T°0 0°69¢2 T°692 02l G0GY g
sanyted OoN - 4,0082 = &
18 SoToAD 93nuUTW-9 . . . ¢
TeuoT3TDPE o SNTA 900°0 0 6°9¢g 6°9¢¢ 0912 AR 1
soToko 99nNUTW-XTS TE 0 o} 6°9¢€ 6°9E¢ 09T TT ARt t
santtel - 4,0082 = L
18 oT0A0 anoy-T . . . S,
LeuoTTppE we snTd 060° 0+ 6°0 0°* 792 6192 009°¢ 0%y vE
soToA0 oj3nUTW-XTS § TTO O+ 0 6* 792 6° 792 008°T oGy ¢
santIied - JI,00TE = & . . . .o -
18 +oes ¢f uw T surd #T0"0 6°T G*ole 7°2Le 09¢€ 6069 Ve
oTo£0 99NUTU-XTQ 0TO"0- G*0 f°2le 6°cle G6 oy 2
santted - J1,00TE = &
qe *08s QT Uutw T
snTd oToAD 93NUTW-XTY 0 0 0" Hte 0*Hee 0 OrAK4:N T
*ut suexd surexs sureJad 098 .
SHIBWSY ¢ gSSaUNOTUY ‘ggoT; ‘qyudtem ‘quldTom ‘awTy Bu1q3B0) wom
utr asuey) TUITOM | -9s0g -9ad aansodxy ToPOon

5=-22

VIVAD LSHO dDCH ONIAVHT
’ ¢-¢ W4V




“IoquEBYD OoJe UT PaxTW = usfAx0 T2 pue UsSOILEN %6), 30 pesTadwod MOTI sB8) o

GgTO"0 G6500°0 0ge"*0 7900 00t ‘4 9
GQT0'0 gLE0O" O LGe 0 gn0°o 0£9°T VG
GgT0"0 0LE0O"0 LS2°0 THO'O 0£9°T g
¢QTO"0 gLE00"0 292°0 2h0°0 0zLT \i
6QT0"0 Q6LE00 0 292°0 H0°0 0zL T 1
4gT0"0 gHE00" 0 €he o 6£0°0 0GH T vE
QIO 0 99€00°0 G20 THO*O Q5h ‘T ¢
T9TO0 76£00°0 662°0 €HO'0 009°¢z 2
T9TO°0 LJH700°0 L1620 2600 0LG¢z 2
T9TO*0 G8G00°0 QoE"0 €90°0 000°¢H T
omm\nﬁ RMHSMWM&Q nmhswwwhm “mhﬁwwwhg ﬂhMMMMMM® ‘ON TOPOW
‘P8I MOTF SBD 0T9®QS ©TZZON | UOTHBUSE}S °TZZON | UOT4BUSRIS TOPOW | UOTJeUSEIS SBD o

VIVA NOTLVELLTYD HdAH ONTAVAT

9= HTAVL

£,

5-23



*TopoW JO J53U80 38 POUTBZJO SSSUNOTUZ UT

3
28uey) e

d,000€ = L

e saToLo snutw-9 €00° 0= 0 0'6£¢E 0°'6E¢ 02C‘CT | 02T6d 9
41,0082 = L

38 $oTo40 93nuUTW=9 600° 0= 7°0 9°'g9¢ 0°69¢2 009¢ el VS
41,0082 = L

3e S9T0AD ejnuIwU-9 €o0° 0= T'0 0°692 T°692 ozl Gogy g
d,0082 = L

9 soTofd enuTw-9 900° 0= 0 6°9¢¢ 6°9¢¢C 09T¢e rARY! h
d,0082 = L

e soToAD ejnuUTW~9 0 0 6°9¢¢ 6°9¢¢ 09TTT | 02TS¥ 2
d,0082 = &L

98 oT2o40 JnOH-T 0600+ 60 0 192 619 009¢ ol Ve
d,0082 = L

3e soToLo SqNUTW~9 TTO* O+ o] 6°h92 6 H92 00QT G0GYa €
d,00TE = &L

1e soTofd ejnuTwW~9 {TO* 0= 6°T G0l 1 ele 09¢ G0%Y Ve

I,00TE = I 3® oTof0 T 0TO" 0O~ G0 f1'ele 6'cle G6 . gogy 2
d,00TE = &

P@.wmﬂoho 99NUTU=Q 0 0 0°Hee 0°HEE 0t IARS: ] T

e sure. sureJad sureas 098 *ON

aToko Sutqesy Jo odAL | ‘eusousfoTyl | ‘ssoT ‘ ) ‘owrq | SButgeo)
ut o8ueu) | ySTeM UITeM=350d YUSTBM-DId asansodxy ToPoR

VIVQ LSEL THAOW HOTH ONIAVHT

L-6 TIEVL

£

5-2l



09SO0 UTW OE=SWL] TBIOL

utw 09 38 0TO°€
utw G 38 OTO‘E utw 0¢ - he 00.L2
utw €€ 3® OTO‘E 09s Q0 UIw 09 SWTTL TBIOL utw g - 9T 00L2
utw TE 38 GEO°¢E utw QT - 2T 00.L2
utu gz e GG0°E 1g3ods 30y utw 2T - 9 c0.Lz2
utu 9g 38 GTO°E ‘utw 09 - 0 00.L2 utw 9 - 0 cole
utw GT 48 008°2
utw 0T 3® 028°¢ QWL T, J = duag Wt L, I~ dus,
vE TOPOI ¢ ToPOW
utw 9 98 OLTE 095 00 UTW 9 = SWL] TeI0L oes G¢ UTW T = SWIJ Te310L
utw G 38 03T E
utw f 38 020°¢ 1qods 304 oss G€ utw T 000 €
utw € 38 0g6°2 ‘futw 9 - 0O 000° € o8s Qf UTW T - O 000°¢-00L2
utw g 48 0TE‘E .
utu T 38 093°¢€ SWTT d o~ dwsl SUT T, g o~ dway,
Y2 TePOR 2 TePON
098 QT UIw /), = SWLJ Tel0L
098 OT UtW T
e 2anTTed 00T¢¢
utw T 000°¢¢€
utuw 9 0¢6°2
utw f = 0 020‘¢
QWT L, - dusy,
T ToPOoW
SHTYOLSTH AWNI I~ THOIVIEdWHL HDCH DNIQVHT
Q-G HIAVL

£

g \\/:

5-25



038 Q0 UTW 9QT  UTW 9QT - OQT 00L2
= SWTJ Te30L  ULw OQT - HLT 00L2
utuw #,T =~ 99T 00L2
utw Q9T - 29T 00.L2
utw 29T - 94T 00.L2
utw 9¢T - 04T 00.L2
WIW OGT - HiT 00Le
utw qHT - QT 002
utw QET - 2ET 00.L2
utw geT - 92T 00.L2
utw 921 - 0T 00L2
utw 02T - {TIT 00L2
utw #TT - gOT 00L2
utw Q0T - 20T 002
utu 20T - 96 00Le
utw 96 - 06 00Le
utw 06 - 48 00Le
ut #g - gL 00Le
utw gL - 2l 0042
utw gL - 99 00.L2
utw 99 = 09 0042
utw 09 - H§ 00LZT
utw w§ - gh Gole
09§ QO UTW 9f = SWIL TBIOL Utw Qf - 2h c0Le
utw gy - 9¢ golz
utw 9¢ - 0% 0olLe utw 9¢ - 0¢ 002
utw 0¢ - 42 002 utw 0t - He coLe
utw g -~ gT 00.2 utw f1g - QT 6oL2
utw QT - 2T 00L2 utw 9T - ¢t 00L2
utw gr - 9 0oLz utw gT - 9 00L2
utw 9 - 0 00L2 utw 9 - 0 00.L2
QU] o~ "dwsf, QWL d o= dusy
¥ TOPON 1 TOPORW

SHTYOLSIH HEWII-TINLVIAINAL HDCH DNIAVHT

panutuo) -g-§ FIAVI

5-26




9§95 J0J PoXTnbal sY3pTs ‘UT-T SYIJ OUT 3NO J0U INQ PagadlIqe] 354 (6 % 3) SuauTo3ds mn

patood atw ‘say g1 xo3 dwsi 38 PIaY .mooo:a 03 JT® Ul paswsy

IjJusSw3vIIg mcﬂm<u

06t = o2ds g3 + 18301

0£€ 18304
T
pepTax 330E
o 'Pe3S§93 30U NG PIjeOTIqQBJ suswroadg SUoK T 050" . %ﬂon MOT~=L .
a UuoI500Ty 5351
— . _— — d,006T @
ot s § OT | "micse t : puoq gods
T g S -- -- 01 2UON T o HorsnISTa UOTSU&"
° , T pusw | FOTEE
. - . . ;. - e | ,008T & o e
[e25 0T 0T ce onx ocz & o pTans0ds
- : ooue}sTsayg
oe (028 0T - il -- - e SUON I
¢t ¢ -- G S -- -- S auoy T 010" eesd
o vl SNONUTAUC
[ [9¢ -- 9 4 - -- S Blei T PoLAATH
¢ . c _ - o -
6T [ S g [ AUON [ TN QL
- - _C - o P
ST St s S S auey T oo 10ds
61 1 -- 4 4 -- -- n suoy 1 2o pHTRIE
St Y -- S < -- -- 3 suox T CEo pucg sods |
ST ST -- S 4 -- -- S BUGH T 010" UOTSNG3Td de
[ ST -- - -= S g S auct! T 050"
. pTa~xsods [
- - - < 5 e 2
ST ST 4 S ¢ suc) 1 ofo oUBLST 53 souten
ST G -- -- -- S 4 s SUON 1 010"
N . . . _— 4,006T
ot o S 0T Iy cée T pucg 0ds
¢10°" uoTsSnJJT
of I3 1 -- -- 0T ol ot auoy 1 Fenggid I
et o Suss
0e 0T 0t -- -- - - o (ST 2 e
U068 pTemjods
$10° Sras
09 o€ [o13 - - oc 0c oc SUON c 20UEJSTSY
p39s9n pateswuy | ,pady | 4,0022 | 4,0002 | J,006T | 4,001 | Iy samsodys | S39%U ‘ut . sihn
suswioads - 3o ‘o9ud pous TETISFER o
> - suswtoads jo . TewIaYL, Jururopr ¢ JUTOL
JO Jaqumu : sangeaadusg 9593 xad suswroads Jo aaqumpy aaqumy | TeTas%en
Teq01 Jaqumu TB%30] )

NVId ISdL MOILVATVAE INIOL
6-G TIIVL

5-28



ot 9Tze | 62€€ qods | PeTERWUY | 090"
06/, 286 €LST SUON soweqstaey | POTERUAY | OEO” G6LTS | Ge souken
60T 05T LLe . peTeSUUY | OTO
—— _— 6466 peTeSUUY
- - ghG 00ST | 052 jods pasy 2160

uo T -g-
€9T ozh 172g suol FS0ISTT T paresuuy 9-06he
8T €TE LGS pesy
- -— 9g4 pPITBAUUY
L L 00C 004T | 0S4c peSy . €TGQ

$TO ) =06 Th dusYy

9ge o1 6LS I paTesUUY i
TO¢ 9TS 289 q0ds pasy

20UBASTS2Y
T T 629 006T | 0¢z . poTeSudyY
--- -—- 2£9 pa8Y 2168
nee 2nn 2€6 DO TBAUUY ~9-o6ne
née Aol 219 SUoN pogy
d,006T | d,002T | I¥ d, ay sururol | . - o

10 pOTLON TITPUOD | ¢ onn T

qods/qT ‘peoT @3eWIFTN

aansodxa TemWIaU]

VIVQ LSEL INIOL dVT L0 XAUVWANS

0T-¢ HIIVL

>=29



5=30

[ A 629 A A A A A A Savy
#E9 -Gz
on9 =62
8t9 ¢=-C2
L66 o-G2
G¢9 paTedIuy =62
2t9 Ay
166 mljm
199 f~he
619 =11
eh9 =12
619 004T 062 P8y =17

| ) A ’

fee ATl 2es EIN

¢ee o TES G=2

922 HER 626 -2

€2 T6H ces =2

cze Ly €es e

T9¢ Oty €es @mﬁamﬂg< -2

H62 GoH 219 3AY

TOf g 695 =T

s Q0 $09 T

6L [6¢ c2h9 -1

20¢ T9¢ 6T9 2TSQ rods -1

90¢ TOH €29 SUON | BuoN peSy | -9-06hg | GTO" | °our3sTSOY T

d,006T | d,00¢T | Id g, Iy o TbHO CoN T Sururof HOTABOTITIUSPT
q0ds/qT s qeoH ‘o8enH JO pPOyLs| usuwtosdg
¢prOT mpmeﬂpﬁb aansodxs TBWISYL

Th HENFIM GTO°O ¥OJ VIVU LSHL INIOL dVI
4
TI-¢ TTEVL




5-31

) J 985 A ] A \ J A Ay
LEG G=lz

629 =12

€29 £=Le

494 =Lz

064 @mdmmwmﬁdq T-l2
096 X Ay

€96 =92

€96 =92

614 £=92

0LS €168 c=9¢

286 006T 062 peldy | =L-06%2 GIO" T-92

A A A A
982 o4 6.5 SAY
20§ TSH 196 =1
glLe 0Lk 196 €=
0ge LlY L66 =1
TL2 661 QLS paTesuuy T~
I
TOE 916 299 Iry
T62 056 | 649 . ¢-¢
&ge 904 589 : =€
HTE 605 669 ¢=¢
00§ T2¢ T99 Sxde qods el
LTE 9TS ¢g9 QUON suoN P28y | =L-06H72 STO" 90UBLSTS oY =€
I,006T | d,002T Ia g, Iy coraTE0n o - SuTuTOr HOTqEDT IT9UBDT
pogm\nﬁ oansodxe TEUISUL e 1e3H ‘o8B JO POYLSNW uswtoadg
‘peCT 23BWTILTN

T AN S$TO'O ¥0d VIVA ISEL INIOL VI

panuUTIVO) - *TT-¢ HIFVL

y -'»%%
&




A J J [ J
OfhT 9Tze | 62E¢ Sy
€THT ¢60z | Lhect G-te
-——- ohze | €LEE 1~z
oghT Ohee | LOEE g-ce
GLNT 00€z | 09¢€ TC6T 2-ce
CEET C6Te | 09€E -9-9QT 090" T-¢e
J [
0GL 286 €LGT FAY
1L9L 996 £QsT G=22
€1l €66 €LGT f-ce
€l 2TOT | 096T ¢-ce
) €L6 €LCT =22
LLL G96 LLGT G6.L15 0£0" T~c2
\
60T 06T Lle , Sy
OTT gcT 6ge G-12
€6 LET 082 Uit
2Tt 09T Llz =Tz
LTT 19T L9z qo0ds z=T2
¢TIt 29T Tle SUON SuoN GEOTT peTESUUY OTO" | @oue3sTsay -T2
E,006T | 4,002T| I8 d, ay  oN oratomo ‘ut Sututol UOTABOTITIUSDT
qods/qT sansodxe TEUISYL ek FATPUOD ‘oFen JO POULH uswtosdg

‘peOT 99BWTHTN

G2 SUNAVH ¥04 VIVQ LSHEL LNIOL dVI
gT-¢ dIdVdL

5=33

'\\:g\‘ \



*(*ur g ¥ "UT T ®BOJI® DOZBI]) uswrtoads uo peOT ﬂdpoan

*noATI aad spunod,,

2zReIq
Q1T q 08T q - 0T6T q snonuTIUOY peTesuuy 0TO* T-298¢c
AT oce ¢T6 @ OELT pegeATy peTesUUY 090" 1692
¢l 2 18 o L9¢ . 964 - pPe3eAsTYH psTeauUuyY 0to" T062
19 26 - Q60T jods pazedd paTeauuY 00" T-29gc
6¢ 26 - Q8% q0ds pozBIg psTeauUuyY 010" T-29Q¢ IDTN dL
pucq 1ods
Ot €9 - ohb GoTsniJid psTesuuy 0¢0" T~293¢
pucq aods
¢ Q¢ = e UoTsnNJJTad DaTeauuy OTO" T-c98c
gods/qT | gods/aT qods/qT
‘5 ¢ PTSTA ¢ .
JeuT1T S3BUTITN SBWTRTN ut
gututol UOT3TPUCD ‘o3e3 *ON TeTI59eH
d,00ee 4,0002 I Ll JO POU3si TeTJIo3 BN TBTI93 BN FesH

sanjyeradweg 4s9]

VIVQ ISAL INTOL JVI JDTN dL 40 XYVWWOS

€1-¢ HTIVL

e

5=3k



TABLE 5-1k
LAP JOINT TEST DATA FOR TD NiCr

Thermal Ultimate load,
" ei{ii‘iﬁ::ion Method of joining | Gage, in. Condition | Heat No. exposure 1b/spot
ar °F RT 2000°F 2200°F
31-1 Diffusicn .010 Annealed None | None 219 37 33
spot bond
31-2 285 53 36
31-3 220 . 33
31-k 273 33 26
31-5 239 27 25
Avg 247 38 31
32-1 .030 %63 93 2L
322 987 L5 57
32-3 920 - 30
3e-k 907 20 2
32-5 933 95 65
Avg g2 63 Lo
33-1 Brazed .010 520 49 35
spot
33-2 Lés 63 Lo
33-3 523 51 b5
33-h 453 55 L1
33-5 480 L3 36
"sg Avg 188 52 39
3u-1 030 %5 89 u7
3h-2 1112 130 103
343 1152 131 53
34l 1163 27 86
3L-5 1100 8L Ll
Avg 1098 92 67
Ult yield
35-1 Rivets 030 59;1 370 89 70
39-2 600[ 357 89 67
35-3 560| 375 79 h
35-4 619|352 T 80
35-5 601] 380 90 73
Avg 596| 367 8l 73
38-1 L060 1763| 916 229 173
38-2 1700} 900 222 167
38-3 1708] 933 216 169
38-k 1702| 925 209 185
38-5 1767|900 224 176
Avg 1730|915 220 176
37-1 Continuous .010 As 2862-1 k25 148 116
braze rec'd
37-2 2000 182 108
37-3 . 2140 2t 104
37k 2115 166 118
37-5 1885 160 1hh
Avg 1910 180 118

5=35




TABLE 5-15

SUMMARY OF SPOT TENSION TEST DATA

Ultimate
Thermal exposure
Mgtbo@ of Heat Condition load,
Jjoining no. o ib
hr F
(a)
Aged None 190
Annealed None 373
2k90-7-
8513
Aged 250 1500 115
Annealed 250 1500 12k
Resistance
t
SPo Aged None 164
Annealed None 310
2h90-6-
8512
Aged 250 150 99
Annealed 250 1500 106
Aged None ol
Annealed None 176
Diffusion 2490-7-
spot bond 8513
Aged 250 1500 106
Annealed 250 1500 112
#A11 values are the average of five specimens.
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TABIE 5-16
14
SPOT TENSION TEST DATA FOR .015 RENE Ll

Thermal exposure | Ultimate
. Spgc?men' Mgt@o@ of Condition Heat load,
identification Jjoining no. hr op 1b
9-1 Resistance | Aged 2490-7- None None 166
9-2 spot 8513 221
9-3 . 205
9-L 172
9-5 184
Avg 190
/
10-1 Annealed 385
10 2 376
10-3 35k
10-k 376
10-5 376
Avg \ | 373
Y
13-1 Aged 250 1500 12k
13-2 . 122
13-3 1722
13-4 9L
13-5 112
Avg 115
Y
1h-1 Annealed 120
14-2 126
14-3 NA
1h-4 128
1l-5 12kL
Avg ) 124
] Y ] /
11-1 Aged 2L90-6- None None 17k
11-2 8512 166
11-3 _ 168
11-k 163
11-5 1h7
Avg 164
Y
12-1 Annealed 288
12-2 338
12-3 310
12-4 306
. 12-5 NA
Avg ' ! ' ’ J 310
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TABLE 5-16. - Concluded

SPOT TENSION TEST DATA FOR .015 RENE 41

Specimen Method of - Heat Thermal exposure | Ultimate
identification joining Condition no. ° load,
hr F 1b
15-1 Resistance| Aged 2490=6- 250 1500 91
15-2 spot 8512 105
15-3 93
15-4 105
155 100
Avg 99
J
16-1 Annealed 104
16-2 98
16-3 110
16k 108
16~5 110
A 106
e y | ] Y |
17-1 Diffusion | Aged 2Lo0=7- None None 60
172 spot bond 8513 49
17-3 3k
17-4 109
17-5 68
Avg 6L
/
18-1 Annealed 162
18-2 194
18-3 156
18-L 190
18-5 178
Av 176
€ i Y Y
19-1 Aged 250 1500 103
19-2 103
19-3 121
19-4 93
19-5 112
Avg 106
Y
20-1 Annealed 80
20-2 115
20~3 112
20-U4 116
20«5 135
Aveg J ' 7 ] 112
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STRUCTURAL ANALYSIS MODEL
by
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Section 6

STRUCTURAL ANALYSIS MODEL

This section provides a description of the redundant structural analysis
model, summarizes redundant model input data, and discusses uses of redundant
model output.

REDUNDANT MODEL DESCRIPTION

Internal loads, displacements, and influence coefficients for the wing
structure were determined by a mechanlzed redundant-structure analysis solution
based on the matrix force method (ref. 6-1). The lumped element model used for
this analysis represented one-half of the structure on one side of the symmetry
plane of the vehicle. The analysis for influence coefficients and internal .
loads was necessary only for symmetrical boundary conditions at the symmetry-
plane of the model, since only symmetrical maneuver loads were evaluated., For,
the analysis of design conditions, the external loads were transformed into the
nodes of the structural model. Only loads normal to the wing surface were
congidered. A drawing of the model is shown in figure 6-1. It consisted of
three parts: ' ,

l. The center wing model was a fairly well-detailed
representation of the region of primary interest
and was used for the evaluation of structural
concepts. This model consisted of cap members and
shear panels for both wing cover surfaces, and had
typical spar spacings to satisfy requirements for
conducting the stress analysis.

2. The aft wing plate representation (with increasing
spacing away from the center area) served to provide
realistic restraint and load transfer to the center
area and to a number of deflection points sufficient
for load computation purposes. Also, this part of
the analysis model consisted of a mesh of spanwise
and chordwise bending members and torsion box
elements.

3. The fuselage model was a highly idealized represen-
tation of the fuselage shell and could be coupled to
the wing model in scveral ways to analyze the effect
of various fuselage wing attachment methods. The
fuselage consisted of a number of longeron, panel,
and frame elements to represent the bending and shear
stiffness of the fuselage.
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The redundant-structure analysis solution determined thermal stresses and
thermoelastic deflections due to the average thermal expansion of axial elements.
Stresses due to thermal gradients within elements of the redundant analysis
model were computed separately by means of a thermal-stress computer program,
and were superimposed on redundant model stresses. These elements were analyzed
for simple boundary conditions (usually no axial restraint and full rotational
restraint), and their cross sections were subdivided into many small subelements,
for each of which the free thermal expansion was specified in terms of local
temperatures.

The wing considered for the Hypersonic Cruise Vehicle was a multispar,
multirib structure. For the purpose of structural analysis, 1t was represented
by a grid of spanwise and chordwise beams and ribs which consisted of upper and
lower cap area and vertical shear web. The grid was completed by cover-shear-
panels in each surface. This beam-rib system of the analysis model represented
lumped areas of the actual structure, since model grid distances were different
from actual beam and rib spacings.

The beam-rib gridworﬁ of the analysis model in the investigation region
had approximately twice as fine a mesh than fore and aft.

This model was used in analyzing various types of structural panels and
two main structural arrangements: t |
l. Arrangement 1 — Full spanwise and chordwise bending continuity
for all beams and ribs of the model within the wing was pro-
vided. Wing-fuselage connection for both Py and Py loads was
located at each spar along the BL 120 rib. This arrangement
was analyzed for various sets of section properties represent-
ing lumped values of chordwise, spanwise, and shear-stiffness
characteristics of monocoque and semimonocoque structures.

2. Arrangement 2 — Represented the statically determinate wing; a
typical configuration is shown in figure 6-2. Its main charac-
teristic was the absence of any chordwise bending continuity
from one box beam to the next. The same basic model network
was used as in arrangement 1, each spanwise beam of the model
representing lumped beam properties. For this arrangement,
this single model beam represented two adjacent parallel beams
which were connected to have the same vertical deflection. The
continuity of chordwise cap forces was interrupted at each beam
so that no chordwise bending continuity exists in the model.
This was accomplished by a technique of calculating the redun-
dant force units in two sets on two sets of alternating box
beams (figure 6-2). Each box beam was independently connected
to the fuselage vertically (Pz) at both beams and horizontally
(Px), only at the top of the front spar of each box. In this
fashion no force system was set up which can express continuity
of chordwise strains between one box and the next and between
wing and fuselage.
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External loads were introduced at node points. Effects of differential
thermal expansion were accounted for by introducing free thermal expansions of
axial elements as initial strains. The load point network for both versions
of the redundant model is presented in figure 6-3. This load point network
was used to introduce air, inertia, and ramp loads into the wing structure.
?uel ta?k inertia loads were introduced at the wing-fuselage intersection

BL 120).

SUMMARY OF REDUNDANT MODEL INPUT DATA

The evaluation matrix for redundant model loads is presented in table 6-1.
Initial internal loads were based on a nominal panel configuration representa-
tive of both monocoque and semimonocoque structure concepts. Equivalent ex-
tensional and shear thicknesses of the primary structural panels used for
determining initial loads are shown in table 6-2. Thermal data &LAT) were
input for each flight condition, and temperatures were from preliminary iso-
therm data. These isotherms were constructed from radiation equilibrium
temperature data at five stations and approximately twenty discrete points
per wing surface. .

: A

Final and intermediate internal loads were based on the panel dimension
fleyibilities and mctual thermal input data deseribed in tables 6-3 through 6-8,
respectively, for the'monocoque (waffle and honeycomb), semimonocoque (spanwise
and chordwise), and statically determinate primary structure concepts. The
element flexibility matrix for the waffle version of the redundant model was
adjusted to account for Poisson's effect. Two redundant analyses were required
for the chordwise concept (intermediate and final).

USES OF REDUNDANT MODEL OUTPUT

For this program, the redundant model output data were used in the follow-
ing areas:

1. Internal load distributions, particularly in the main area of
interest, as a basis for the stress analysis and evaluation of
the various structural concepts. Initial redundant model loads
are presented in the evaluation results section of this docu-
ment as well as the final redundant model internal loads for
the monocoque, semimonocoque (spanwise and chordwise), and stat-
ically determinate primary structure concepts.

2, Structural influence coefficients for vehicle flutter evaluation.

3. Vehicle deflections for evaluating aeroelastic effects on panel
pressure distributions and cruise performance (drag change).
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TABLE 6-2
REDUNDANT MODEL INPUT DATA FOR INITIAL INTERNAL LOADS
Panel concept: nominal panel configuration representative of both
monocoque and semimonocogque concepts.
Panel orientation: chordwise

Material:

a. primary structural panels - René 41
b. rib and spar webs - Haynes 25

Thermal protection system: no heat shields or insulation

Rib and spar webs: 60° circular-arc corrugation, minimum gage web
thickness, tw = 0,015 in.

Equivalent extensional (te) and shear (ts) thickness of the primary

struclural pauels: .
: e g
Location in. in,
Upper Surface 0.038 0.020
Lower Surface 0.038 0.020

Panel size: spanwise direction = 46 in.
chordwise direction = 92 in.

Rib spacing: 46 in.
Spar spacing: 92 in.
Effective cap areas (includes closeout effects):

spar caps = O
rib caps 0]

Thermal data: (eAT) input for each flight condition.

m} Modulus: extensional and shear modulus based on average temperatures
: for the 2g maneuver condition.
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TABLE 6-3

MONOCOQUE WAFFLE REDUNDANT MODEL INPUT DATA

FOR FINAL INTERNAL LOADS

Panel concept: —hBO b4 450 unflanged waffle grid plate

Panel orientation:

Material: Panels,
and aged at 1400CF

Thermal protection
lower surface

Rib and spar webs:

chordwise

/
ribs, ans spars material René L1, solution treated
system: partial heat shields at outboard area

o . . R
60~ circular-arc corrugation, minimum gage web

thickness, tw = 0.015 in,

Equivalent extensional (te) and shear (ts) thicknesses of the primary

structural panels:

Location

Upper Surface
Lower Surface
BL 0-120

BL 120-212
BL 212-350

tes tgs
in. in.
0.020 0.040
0.025 0.0L6
0.025 0.0L46
0.030 0.053

Panel size: spanwise direction = 20 in.
chordwise direction = 43 in.

Rib spacing - 23 in.
from cap G, to cap G

Spar spacing - L6 in.
Effective cap areas (includes closeout effects):

0.16 in.g
0.12 in.

spar caps
rib caps

(]

Thermal data: (¢AT) input for each flight condition

Modulus: extensional and shear modulus based on temperatures for the
2g maneuver condition

61



TABIE 6-4
MONOCOQUE HONEYCOMB-CORE SANDWICH REDUNDANT MODEL
INPUT DATA FOR FINAL INTERNAL LOADS
Panel concept: Honeycomb-core sandwich
Panel orientation: chordwise
Material: René U4l, solution-treated and aged at 1400CF

Thermal protection system: partial heat shields at outboard area
lower surface

Rib and spar webs: 60° circular-arc corrugation, minimum gage web
thickness, t, = 0.015 in.

Equivalent extensional (t.) and shear (tg) thicknesses of the
primary structural panels:

te’ tss
Location in. in.
Upper Surface 0.029 0.029
Lower Surface
BL 0-120 0.033 0.033
BL 120-212 0.0k 0.0k2
BL 212-350 0.027 0.027

Panel size: spanwise direction = 40 in.
chordwise direction = 80 in.

Rib spacirg: U4O in.
Spar spacing: 80 in.
Effective cap areas (includes closeout effects):

0.315 in.2
0.315 in.2

spar caps
rib caps

Thermal data: (@AT) input for each flight condition

LY PO T DU At A ad
Modulus: extension

the 2g maneuver con

Qo
-

ct

(g

Q

B
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TABLE 6-5
SEMIMONOCOQUE SPANWISE REDUNDANT MODEL INPUT DATA
FOR FINAL INTERNAL LOADS

Panel concept: Tubular panels (upper and lower surfaces)

Panel orientation: spanwise

Material: Panels, ribs, and spars material René'hl, solution treated
and aged at 1L400°F.

Thermal protection system: heat shields, both upper and lower, with par-
tial insulation (1/4 inch Dyna-Flex) on the lower surface outbosrd area

Rib and spar webs: 60° circular-arc corrugation configuration with
minimum gage thickness, tw = 0,015 in.

Equivalent extensional (t ) and shear (t ) thicknesses of the primary
structural panels: © °

Location t t
e s
in. in.
Upper surfocc 0,024 0.016

Lower surface

BL 0-120 0.026 0.015
BL 120-212 0.030 0.018
BL 212-350 0.028 0.016

Panel size: spanwise direction = 43.0 in.
chordwise direction = 89,0 in.

Rib spacing: U6.0 in.
from cap ¢, to cap G,
Spar spacing: 92.0 in.

Effective cap areas (includes closeout effects):

2
spar caps = 0.22 1n.
2
rib caps = 0.3k in%

Thermal data: (@AT) input for each flight condition

Modulus: extensional and shear modulus based on temperatures for the
2g maneuver condition.



TABLE 6-6
SEMIMONOCQUE CHORDWISE REDUNDANT MODEL INPUT DATA
FOR INTERMEDTATE RUN

Panel concept: Convex beaded panels for exposed upper surfaces;
tubular lower surface panels

Panel orientation: chordwise

Meterial: Panels, ribs, and spars material René 41, solution-treated
and aged at 14OO°F

Thermal protection system: heat shield lower surface with partial
insulation of the outboard lower surface

Rib and spar webs: 60° circular-arc corrugation configuration with
minimum gage thickness, tw = 0.015 in.

Equivalent extensional te and shear ts thicknesses of the
primary structural panels:

te,x ty %

Location in. in. v
Upper Surface 0.029 "0.022
Lower Surface 0.0hh ) 0.028

spanwise direction = 89.0 in.

Fanel size:  jordwise direction = 43.0 in.

Rib spacing: 92.0 in.
from cap @ to cap G,
Spar spacing:  16.0 in,

Effective cap areas (including closeout effects):

i

spar caps = 0.34 in.2
rib caps = 0.2h in.

Thermal data: @AT) input for each flight condition

Modulus: extensional and shear modulus based on temperatures for
the 2g maneuver condition '
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TABLE 6-7

SEMIMONOCOQUE CHORDWISE REDUNDANT MODEL
INPUT DATA FOR FINAL INTERNAL LOADS

Panel concept: Convex beaded panels for upper exposed
surfaces; tubular lower surface panels

Panel orientation: chordwise

4
Material: Panels, ribs, and spars material Rene Ul,
solution-treated and aged at 1400°F

Thermal protection system: heat shield lower surface with partial insulation
on outboard lower surface.

Rib and spar webs: 60° circular-arc corrugation configuration with minimum
gage thickness, tw = 0.015 in.

Equivalent extensional te and shear ts thicknesses of the primary structural

nanalas
ranels: .

-

t t
e,X s
Iocation in. EE:
Upper surface
@ - BL 120 0.025 0.016
BL 120 - OUTBOARD 0.031 0.025
Lower surface
¢ - BL 120 0.026 0.015
BL 120 - BL 212 0.033 - 0.020
BL 212 - BL 350 0.028 0.017

Panel size:
57 x 21 in. (span x chord), @ - BL 120
75 x 21 in., BL 120 - OUTBOARD

Rib spacing:
60 in., @ - BL 120 . .
78 in., BL 120 - OUTBOARD l rom cap @, to CaP.@al

Spar spacing: 24.0 in. lfrom cap @, to cap q,,
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TABLE 6-7 - Concluded

SEMIMONOCOQUE CHORDWISE REDUNDANT MODEL
INPUT DATA FOR FINAL INTERNAL LOADS

Effective cap areas (includes closeout effects):

spar caps:

Iocation Upper Lower
@, - BL 120 0.34 0.25
BL 120 - BL 212 0.540 0.21
BL 212 - OUTBOARD 0.31 0.20

rib caps: 0.19 in.2

Thermal data: (XAT) for each flight condition

Modulus: extensional and shear modulus based on temperatures for the 2g
maneuver condition
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TABLE 6-8

STATICALLY DETERMINATE REDUNDANT MODEL
INPUT DATA FOR FINAL INTERNAL LOADS

Panel concept: Beaded both surfaces
Panel orientation: spanwise

Material: Panels, ribs, and spars material
René 41, solution treated and aged at 1LOO°F

Thermal protection system: heat shield both surfaces no insulation

Rib and spar webs: 60° circular-arc corrugation configuration with
minimum gage thickness, tw = 0.015 in.

Equivalent extensional (te) and shear (ts) thicknesses of the primary
structural panels:

Iocation in. : in.
Upper Surface 0.028 0.016
Iower Surface
BL 0 - 120 0.026 0.015
BL 120 - 212 0.030 0.018
BL 212 - 350 0.028 0.016

Panel size: U3 x 89 in. (span x chord)
Rib spacing: 46 in.

from cap €¢,to cap §,
Spar spacing: 92 in.

Effective cap areas (includes closeout effects):

0.15 in.2
0.12 in.

spar caps
rib caps

Thermal data: (@AT) input for each flight condition

Modulus: extensional and shear modulus based on temperatures for the 2g
maneuver condition

6-13



SuTMBIP TODPOW JI93SBW ‘T-9 2InJTJ

0E0€E VLS

0£LZ V1S 0852 V1S v0SZ V1S 8SYZ VLS zivz V1S 99€Z V1S 02€Z V1S

6-1h

fahb J&
I i '
-y
_ _
N N
9EiIZ VLS 8802 V1S CE6L VLS 004} V.S 0GEl VIS 0S6 VLS 009 V1S
PP |
S
008€ VLS \
i
T
t ]
H Y
' ] w '
rol
amd
S5 18 I ONIM
v———ed
88y 18 j
N
96€ 18 N w.l/l/”
- N .
tvoe 18 N\ L
X, H .
Zlz 8 _ N H /7/ S |
IIIJ
021 118 ™ =+ gy
g H ——
[ o1 1 I
7] 7] 7] 0 O Vininiu N n 7] 0 7] n (7]
~ 4 4 4 44 djd4] 44 4 d — = -
> b > b4 > >i>i>ix»i>»>» » » > > >
w N N N N ininipion — - - w0 3
o © ~ o U bidIWEN] O W ~ w n o
@ =
3 & & o RgI5ISiRles 8 3 ® °
w0 n
- 4 A
3 » P
ANNON
W N -
[ LIV
5N






TopOW YJIOM}SU SPBOT ‘£-9 2aNITd

. *syutod plab
© |9pow |pIN{ONlys ayj So SWDpS dYyj

. palequnu jou aip syutod plib ppo] -~ sjopN

L | 00¢€ Gl
GLS e . . 3|p2s 0} JoN| . o £

0o 056 ¢

.9 | . L ocL | osel | ¢
28y [ e'e . -

®
¢

96

e.m @ - , . 00 | 009 l

v0

@.@’@*MJ’M e
v - O-O-O-O-OO-D-Fa
ozt (v1) 9’9’9’@.@’@ N’Q’Q'
@ EEEE®OE®E

6
P

Butt line

(8] [N N N N N N — -

g & d4 & & 8 & 3T 8 3 S

O (= o < o o~ N N o N (&
uol4nys Buip

6-16



Section 7

A PLANE STRAIN ANALYSTIS FOR
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SYMBOLS

A Area of lumped element, Ast

a,b,c Rectangular Cartesian coordinates

E Modulus of elasticity

L Length

M Bending moment

N Extensional force in xy coordinates

T Temperature

t Average thickness of lumped element

u Axial displacement

a Mean coefficient of thermal expansion
As Average width of lumped element

€ Strain

g Stress

Subscripts

a,b,c Denotes relationship to a,b, and c axes
J Denotes number of lumped element

m,n Denotes first and last number of lumped elements, respectively;

also, m denotes mean value

0 Denotes temperature at which the thermal stress of all elements
’ is zero

~1
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Section 7
A PLANE-STRAIN ANALYSIS FOR DETERMINING THERMAL STRESSES

A plane-strain analysis of themal stresses is presented in this section.
For many applications, the procedure provides an adequate estimate of stresses
due to temperature gradients. It is especially useful for determining approxi-
mate stresses of high-temperature structures during the preliminary phase of
design.

ANALYSTS

Consider the lumped structural model shown in figure 7-l. When the
structure is subjected to external loading of Ny, My, and My, and to transient
heating, a plane located originally at a* = O is translated parallel to
the a' axis and rotated about the b" and ¢" axes. This analysis was
conducted using the methods of references (7-1) and (7-2). The Bernoulli-Euler
assumption was used for the axial displacement equation. This requires the
axial displacement component be a linear function of ihe couourdinates in the
plane of the cross section., Denoting the axial coordinaté by a', and letting
b' and c¢' be the centroidal cross section. The axial displacement u may be
written as '

u. = F, (at) + 03 Fl (at) + bg F2 (at) (7-1)

J
where
FO, F1 and F2 = linear functions of the axial coordinate
a', bt and c¢c* = coordinates measured from centroidal axes of cross
section
J = subscript denotes number of lumped elements

The corresponding strain can be written as

ej aa;

= t t -
Fy o+ e Fl o+ bj F, (7-2)

where dots indicate differentiation with respect to at.

~1
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The stress component is

0; = Ej [ej -txmj (Tj - TO)] = Ej (ﬁo + CS %l + b3 %2) - mm'j Ej (Tj - To)
(7-3)

where

ap, = mean coefficient of thermal expansion based on To’ in./in.

TO = temperature at which the thermal stress of all elements is zero, °F

The last term on the right-hand side of equation (7-3) is entirely a
function of temperature for a given material; hence, it is convenient to
express it simply as

f(T)J. = —amjf Ej(Tj - 1) (7-k)

The functions Fy , F1 , and Fo are determined so as to satisfy the
following equations of equilibrium.

J=n
g.AA, = N ) 7-5
2 oahy = N, 1-5)
J=m
J=n
AL, et = -Nc -6
o5 A4, ok M - N (7-6)
J=m
J=n
0. AL, b = - (M +ND (7-
T (1_ +N_B) (7-7)
J=m
in which
b and ¢ = coordinates of centroid, in.
N = axial load acting parallel to a axis, 1b
a

moment about b axis, in.-1b

o=
]

=
I

moment about c¢ axis, in.-1b

As t = area of lumped element, in.2

=
H
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t = average thickness of lumped element
As

m and n

average width of lumped element

subscripts denoting first and last number of lumped
elements, respectively

The coordinates of the centroid are

Jj=n
25 E.AA. b
R . (7-8)
EA
Jj=n
:S ES‘AA c
g = £ (7-9)
EA
where
j=n
- _ -10
EA 2 E, 44, (7-10)
J=m

The coordinates in the b'c! system can now be expressed in terms of the
reference coordinate system, b c.

bt = b -b (7-11)
¢t = ¢ -c (7-12)

Substituting equation (7-3) into equations (7-5), (7-6), and (7-7) and
noting that

J=n J=n
22 E.AA. bt = }S B 4A  cf = O
J=m J=
yields
. N,
Fo = ﬁ- (7"‘13)



(ET)y I:11 FED F, = M (7-14)

(EI)bc o+ ( I)C F, = M (7-15)
where
‘V"**"fff J=n
N' =N - T).AA
a a & £( )j 3 (7-16)
j=n
MU= M- N ¢ - jzm f(T)jAAjcj' (7-17)
| i=n
M= M+ D Z £(T),0AD " (7-18)
i J=m
®
jzn
(D), = B AA ¢ 12 (7-19)
& 4
| iz
‘\ (EI)bc = Z EjAAjbj'cJ_' ) (7-20)
J—m
j=n
_ 2
= E.AA D' -
(EI)C jZm Pt (7-21)

Solving equations (7-1L) and (7-15) for Fq and ig and then substituting
the resulting expressions and equation (7-13) into equation (7-3) gives the
following final stress equation:

~J



= f(T), + 2 E
9% i m

. [Mg (ﬁi)c + M (ﬁi)bc] el - [Mé (EI), + M (Ei)bcl b!

p———— — (7-22)
(B), (ET)_ - (EI)°,_

The stress of all fibers on the principal axes is equal to zero when
only the moment loads are considered; hence, the following expression can be
obtained from equation (7-22) for the angle between the principal axes, b"
and c¢" coordinate axes, and the centroidal axes, b' and c! coordinate axes.

| YoM (ET), + M (BT

cC.
! tanB =J = ¢ (7—23)
b.!

J Mb'(ﬁf)c * Mc'(Ef)bc

The above equation is not required to perform a stress analysis with the
equations presented herein; however, for some applications, it may be desirable
to know the position of the principal axes.

SUMMARY OF EQUATIONS

The equations thus far presented are specifically formulated for the
case of complex bending about two axes with axial loading included. For
problems of simple bending about two axes with axial loading, bending about
one axis with axial loading, and axial loading only, the equations are of
simpler form. A summary of all of the equations is presented.

Case 1. Complex bending about two axes and axial loading:

Nl
o. = £(T). + -2 &,
J I o
Y(FT V(BT r _ "V (RT v (TT 1
- [Mb (BI)_ + M (EI)bCV e [MC (BT), + M_ (EI)bc] b,
J =\ (= —2
(EI)b(EI)c - (EI) be
J=n
N ! = Na - £(T) .AA
a = J3



J=n
Mb' =M - NaE - z f(T)jAAjcj'

tan B =

Case 2. Simple bending about two

J=I

Mb'( I)c * Mc'<_I)bc

EA (EI), J (ET)

N ! P M '
) +Mb—JE £ J

M + NbDH+
J=m
j:
(EI). = E.AA ¢,
b e J J
J
J=n
(EI)c = EAA D!
= 93
Jj=n
EjAAjcj
= L2
EA
b.' =b, - b
J J
1 T + 1 T
M. (EI)b % (EI)bc

E

axes and axial loading:

J



Jj=n
FA = z E.AA .
Fm
J=n
), = )
=
jzn
z EjAAjc.
Te BT
EA
b.'"=b, -D
3 J
Case 3.

Bending about one axis and

N'
o, = £(T), + = E,
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SYMBOIS

a, b x and y distances between simply supported edges of panel

a/b Panel aspect ratio

Area A Area between ¢ and BL 120 of wing investigation area
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T(av) Average panel temperature
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Section 8

STRUCTURAL INTERNAL IOADS

The structural analysis model discussed in section 6 was used for
determining internal loads for the initial panel weight screening, inter-
mediate welght screening, and final structural weight evaluation. The plane-
strain analysis of section 7 was used to obtain chordwise thermal stresses for
the various thermal-protection systems.

INITIAL PANEL WEIGHT SCREENING LOADS

Table 8-1 shows the loads used for the initial panel weight screening.
The loads resulted from preliminary redundant analyses using an extensional
(bending) stiffness of 0.055 inch and a shear stiffness of .070 inch for the
wing surface panels. These stiffnesses were based on panel geometry for a
typical monocoque waffle wing structure.

INTERMEDIATE WEIGHT SCREENING LOADS

The redundant-model internal loads (based on the data contained in
table 6-20)are shown in table 8-2 and were used for the intermediate screen-
ing. Equivalent extensional and shear thicknesses of the primary structural
panels were based on a nominal panel configuration representative of both
monocoque and semimonocoque primary-structure concepts. Poisson's effect was
not included in this redundant model. Thermal data (aAT) were input for each
flight condition. Temperatures were obtained from preliminary isotherm data.
The isotherms were constructed from radiation-equilibrium temperature data at
five stations and approximately 20 discrete points per wing surface.

A survey of the preliminary transient-temperature data for the three
flight conditions (-0.5-g, +2.0-g, and cruise) and the loads of table 8-2 led
to the choice of the +2.0-g maneuver condition as the controlling design for
the intermediate screening. The thermal strains of table 8-3 rather than the
thermal loads of table 8-2 were combined with the airloads and the temperatures
of the preliminary transient analysis for each concept.

DETAIL INTERNAL IOADS (USED FOR FURTHER
INTERMEDIATE SCREENING AND FINAL STRUCTURAL IOADS)

MONOCOQUE WAFFLE LOADS
Redundant-model internal loads and thermal strains for the monocoque

waffle primary-structure concept are shown in tables 8-4 and 8-5. Comparison
of these internal loads with the initial loads shown in tables 8-2 and 8-3

8-1



shows a marked reduction in the final spanwise and chordwise thermal loads
and a considerable increase in the final spanwise airloads.

Comparison of surface panel equivalent extensional and shear thicknesses
for the redundant model and the sized waffle primary-structure concept is
shown in table 8-6. Best correlation is obtained in the inboard and outboard
area lower surface. However, considerable increase in the panel equivalent
shear thickness occurs in the highly loaded inboard area.

A comparison of redundant-model and plane-strain thermal stresses is
presented in figures 8-1, 8-2, and 8-3 for the -0.5-g maneuver, 2-g maneuver,
and cruise conditions, respectively. As indicated, good agreement was obtained,
except near the leading edge. In the leading-edge area, the redundant-model
stresses are higher than the plane-strain stresses. These higher stresses are
probably the result of shear lag effect of the leading-edge member resulting
from sweepback and the difference in temperature gradients between the redundant-
model and plane-strain analysis. The plane-strain analysis considers the AT
in the spanwise direction only; whereas, the redundant model considers both
spanwise and chordwise gradients.

Detail internal loads encompass airloads and thermal strains for the
five candidate thermal-protection arrangements that follow:

Heat-shield arrangment Insulation arrangement
l. Lower surface heat shields No insulaéion
outboard of one~third wing
chord
2. Lower surface heat shields Insulation
outboard of one-third wing
chord
3. Heat shields on entire No insulation

lower surface

v;

4, Heat shields on entire Insulation outboard of
lower surface one-third wing chord
5. No heat shields No insulation

However, the redundant-model loads were determined only for the first
arrangement. For the remaining four concepts, internal loads were evaluated
by assuming that:

The airloads are constant for all monocoque waffle primary-
structure concepts



Redundant -model thermal strains are proportional to chordwise
thermal strains obtained from a plane-strain analysis; i.e.,
€xs Arrangement i

(e ) Arrangement i = (61) Redundant
1
model

lane-strain
€ 1 b
xs Arrangment analysis

where: 1= x, ¥y, xy

The first assumption states that airloads are based mainly on equilibrium
and vary little with perturbations in panel stiffness. The second assumption
is supported by the close correlation (see figs. 8-1, 8-2, and 8-3) of chord-
wise thermal strains obtained from redundant-model and the plane-strain analyses.

Average thermal strains used for final structural sizing of the five
monocogue primary-structure concepts are shown in table 8-7. Average values
for the chordwise thermal strains for each arrangement were obtained from the
plane-strain analyses and are shown in figures 8-4 through 8-8.

MONOCOQUE HONEYCOMB SANDWICH LOADS

The honeycomb sandwich primary structure was evaluated with lower surface
heat shields and insulation outboard of the one-third wing chord, since this
arrangement has the lowest weight for the monocoque waffle concept. Using the
results of the intermediate screening, extensional and shear stiffnesses were
input into the final redundant-model analysis. Thermal data (@AT) for each
flight condition were based on the temperatures obtained from a detailed tran-
sient thermal analysis. Table 8-8 shows the final internal loads, resulting
from the redundant-model analysis, used for the final structural sizing.

Comparison of the surface panel equivalent extensional and shear thick-
nesses for the redundant model and the sized honeycomb sandwich is shown in
table 8-8. Good correlation is obtained in all areas with the exception of
the lower inboard area where a considerable decrease is noted.

Average thermal strains used for the final structural sizing are shown
in table 8-9 for the three flight conditions.

SEMIMONOCOQUE SPANWISE LOADS

Following the intermediate screening, the equivalent extensional and
shear stiffnesses of the tubular concept (representative of the spanwise
concepts), as shown in section 6, were input into the final redundant -model
analysis. Thermal data (aAT) for each flight condition were based on the
temperatures obtained from a detailed transient thermal analysis at 30 wing
locations with insulation at the lower surface outboard area. The internal
loads resulting from the spanwise redundant-model analysis are shown in
table 8-10.



A comparison between the surface panel stiffnesses input into the final
redundant model and those obtained by analysis for the two better concepts
using the final redundant model internal loads is shown in table 8-12. Good
agreement in extensional and shear stiffness is obtained. A comparison
between redundant model and plane-strain thermal stresses for identical
stiffnesses and thermal data input is shown in figures 8-11, 8-12, and 8-13.

For all thermal-protection arrangements, except that used in the
redundant model, the thermal strains were calculated by using the wmathemat-
ical relationship stated on page 6-2.

The plane-strain limit chordwise thermal stresses for each of the flight
conditions for the two thermal-protection arrangements are shown in figures
8-14 through 8-19. The airloads, which are least susceptible to slight changes
in extensional and shear stiffnesses, were considered to be invariant for all
thermal-protection arrangements. Based on the thermal-strain ratio and constant
airloads, the internal airloads and thermal strains for the various arrange-
ments for each flight condition can be obtained. Tables 8-13 through 8-18
contain the inplane loads (Ny, Ny, and Nyy), the chordwise axial thermal
strains (€, and ey) , thermal shear straln (Exy) , pressure, and average panel
temperature.

Insulation was placed to maintain the 1600°F material limit, to minimize
thermal gradients in the spanwise direction, and to provide a match between the
gradients through the wing and the fuselage. Figure 8-18 shows the reductions
in thermal stresses that result from proper insulation placement.

SEMIMONOCOQUE CHORDWISE IOADS

The results of the initial structural sizing were reviewed, and the
convex beaded upper/tubular lower arrangement was selected for input into the
chordwise redundant-model analyses. This arrangement was considered represent-
ative of the candidates to be carried to the detail sizing analysis. The
extensional and shear stiffnesses, panel dimensions, cap areas, and basic
description of the model input are presented in section 6. *

The temperature data (aAT ) were input for each flight condition. These
data were based on radiation-equilibrium isotherm temperatures, obtained from
a detailed gross model thermal analysis performed at 30 wing locations. The
ultimate loads resulting from this chordwise redundant-model run are shown in
table 8-19 for the three flight conditions. A comparison between the stiff-
nesses of the structure sized by using the redundant-model loads is shown in
table 8-20. However, the stiffnesses resulting from the minimum-weight chord-
wise structural arrangement were observed to differ from the stiffenesses used
for the redundant-model analysis. The primary differences encompassed the
shear stiffnesses, the extensional stiffnesses for the upper and lower surface
spanwise direction (effecting spar-cap geometry), and the extensional stiff-
nesses for the lower surface chordwise direction (affecting lower surface panel
shape). Therefore, a new redundant analysis was conducted with the actual
stiffnesses of the minimum-weight chordwise structural arrangement (provided
later in this discussion). 8.1,



The following combinations of tubular convex-beaded primary-structure
and thermal-protection arrangements were assessed:

Primary structure and

heat-shield arrangement & : Insulation arrangement
Upper: tubular No

Lower: tubular Yesb

Upper: convex beaded No

Lower: tubular Yesb

Upper: convex beaded No

Lower: convex beaded No

Upper: convex beaded
Center lower: convex beaded No
Inboard and Outboard lower: tubular Yesb

a
Tubular upper surface under fuselage for all arrangements.
Convex beaded: no heat shields
Tubular: Heat shields required

b .

Insulation on lower surface outboard.

The plane-strain thermal stresses for all flight conditions for the
candidate thermal-protection arrangements are presented in figures 8-19

through 8-39.

Using the same assumption as stated in the semimonocoque spanwise section,
invariant airloads and the thermal-strain ratio, the loads and strains for all
the flight conditions for each candidate arrangement can be determined. Tables
8-21 through 8-41 contain the inplane loads (N, Ny, and Nyy) as well as the
chordwise axial thermal strains (€,) and the thermal shear strains (exy). The
Pressure and average panel temperature are also listed.

As shown in figure 8-29 and table 8-31, the tubular lower/convex beaded
upper surface arrangement with insulation at the lower surface outboard area
provides the lowest thermal stresses and strains.

The load results of the new and final chordwise redundant analysis for
the three flight conditions, presented in table 8-40, indicate lower airloads
in the spanwise direction when compared to the loads of table 8-19. For example,
the lower surface spanwise loads for the inboard area B (BL 120 to 212) were
reduced from -1122 1b/in. to =965 1b/in., at the +2.0-g flight condition. The
chordwise panel airloads remained approximately the same for both surfaces at
the three flight conditions. In general, the shear and thermal loads were
reduced.

8-5



Tables 8-43 through 8-45 contain the final airloads, thermal strains,
pressures, and average panel temperatures for the three flight conditions.

A stiffness comparison between the final sized structure and the
input into the redundant model, shown in table 8-L6, shows good correlation
in almost all areas.

STATICALLY DETERMINATE IOADS

Based on the results of the semimonocoque spanwise initial structural
sizing, the tubular concept was input into the statically determinate redundant
model. The extensional and shear stiffnesses, panel dimensions, cap areas,
and basic description of the model input are presented in section 6.

Thermal data (aAT ) were input for each flight condition. These data
were based on the final temperature isotherms. The internal loads resulting
from this redundant model run are shown in table 8-48. A comparison between
the final-model internal loads for the selected beaded concept is shown in
table 8-49.

Good agreement in extensional stiffness 1s obtained in the center and
inboard regions, while a variation of approximately 30 percent 1s recorded
in the outboard region. This same trend is obtained in shear stiffness. The
airloads and thermal strains used for the final sizing were the final redundant-
model loads. These loads are presented in tables 8-49 through 8-51.
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TABLE 8-1

LOADS USED FOR INITIAL PANEL WEIGHT SCREENING

Wing surface
Upper Lower
Ny 1b/in. -84 -1000 Chordwise
N, 1b/in. ~300 %325 Spanwise
Ney | w/in. -132 -32 Shear ()

dysed for monocoque only.
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TABLE 8-3
a
ULTIMATE THERMAL STRAINS AND STRESSES, +2.0-g MANEUVER CONDITION

(Preliminary Redundant -Model Analysis for Intermediate Weight Screening)

Ty
i
3
7

¥ i +fy: (ey)
f e ey, ™)
b ~-lhordwise e t +fX (ex)
X
a
Stresses, Strains,
psi in./in.
Surface Upper Lower Upper Lower
- - 3 - 31 - = =31, _ -3
Panels fx—36.3 x 10 £ =-23.7 x 107} ¢ =1.59 x 10 ~le =-1.315 x 10
Between h
3L 120-220 fy—-l.89 f= k.1 ey——0.083l &~ 0.228
f_ =5, =3, = 0.672 =-0,512
Xy 5.9 Xy 3.55 Y 7 Y >
Panels
between £ =23.9 . o, 1 e, = 1.05 €, = —2.02
BL 220- f ="-6.75 f = L5 e. =-0.h12 e = 2,13
outboard fy = -L.6 fy = -11.25 Y 0.52k Y “1.k
oo T xy ’ Y ) Y ’
a
Positive values indicate tension; negative values indicate compression.
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Figure 8-4, Spenwise thermal strain distribution for monocoque
waffle concept with partial heat shield at outboard
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Figure 8-5. Spenwise thermal strain distribution for monocoque
waffle concept with partial heat shield at outboard
area lower surface with insulation
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Section 9
INTERNAL THERMAL ANALYSIS
by

D. A. Brogan, ¥. R. Mastroly, and F. L. Guard
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Section 9

INTERNAT, THERMAL ANATYSIS

Detail internal thermal analyses were conducted. The thermal analyses
required for the heat shield and leading edge comparison evaluations are pre-
sented in sections 20 and 21.

MONOCOQUE WAFFLE CONCEPTS

The thermal-protection arrangements were determined on the basis of
material capability, practicality of design for the given wing cross-section,
and detailed thermal analysis data. The thermal analysis data include tran-
sient effects on structural temperatures and isotherms generated for each
candidate thermal-protection arrangement. The transient effects are based on
a general thermal-model which includes effects of heat-shield placement, lower
surface insulation, and spar/rib size. Typical temperature distributions for
the candidate thermal-protection arrangements at FS 2320 are shown in figure 9-1.

Figure 9-1 presents wing-fuselage temperatures (+2.0-g condition) for the
candidate thermal-protection system arrangements and indicates the temperature
and gradient compatability of the fuselage and wing. The most vertical temper-
ature profiles of figure 9-1 indicates the lowest thermal gradient through the
wing and fuselage cross-section. When these profiles are close together
horizontally, the spanwise wing surface thermal gradients are lowest. Using
these criteria, the arrangement with lower surface heat shields and insulation
outboard of the one-third wing chord provides the lowest spanwise wing thermal
gradients, and the closest match between the fuselage gradient and the gradient
through the wing.



Thermal analysis of the monocoque (waffle panel) structural concept was
accomplished with three different approaches. All were transient analyses using
the computer program of reference 9-1 for the solution of thermal networks
representing the actual structure with varying degrees of complexity. The
first method, or "gross model" approach, analyzed the section of wing between
FS 2320 and FS 2412 and from vehicle centerline to the wing leading edge, as
shown in the sketch below:
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Primary structures (upper and lower panels and vertical webs) were represented
by flat plates of uniform thickness and temperature. Internal heat transfer
was by radiation only, with configuration factors determined for diffusely
emitting and reflecting gray surfaces by the Hottel matrix method. The gross
model approach was used to determine mean temperature histories for panels,
webs, and heat shields, beam cap temperature histories, and the effects on all
temperatures of varying insulation thickness in thermally protected areas.

The second approach was used to develop isotherms for the entire wing structure
and employed the same degree of thermal network complexity as the gross model
approach. Thirty locations on the wing were examined. This provided an
adequate base from which to draw temperature pattern lines for the entire
upper and lower wing surfaces at specific trajectory times. The third
approach was a detailed analysis of the waffle panel structure, using a
thermal network of five nodes (one for the waffle skin and fopr along the
stiffener) to account for conduction and radiation through the panel. Upper
and lower surface panels were examined at locations along FS 2366 (under
fuselage, inboard wing, and outboard wing), accounting for radiation heat
transfer within the panel-web wing box structure by the Hottel matrix method.
The detailed temperatures derived were used to determine local stresses and
deflections due to temperature gradients through the panel structure.

Preliminary temperatures determined from the radiation equilibrium
analyses indicated that thermal protection is required at the outboard wing ’
areas to limit primary structure temperatures to under 1600°F and to control
thermal gradients. To determine the extent of thermal protection required for
the monocoque concept, the variation in structure temperatures with insulation
thickness was examined at one fuselage station (FS 2366) from BL 240 to BL 360.
These temperatures, derived from the gross model analysis, were examined at the
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-0.5g condition (20.3 minutes in the trajectory) to observe upper surface peaks,
at the +2.0g condition (20.6 minutes) to observe lower surface peaks, and
during cruise (40 minutes) to observe near steady-state effects. The gross
model assumed flat structural panels with an equivalent thickness t of 0.05
inch and 0.06 inch for the upper and lower surfaces, respectively. A 0.01l
inch flat sheet of Rene' 41 was assumed for the heat shield on the lower sur-
face. The upper surface was unshielded. Insulation material was 6.0 pcf Dyna-
Flex. Figures 9-2, 9-3, and 9-4 show waffle panel and lower heat shield
temperatures along FS 2366 for the three flight conditions, respectively.

Fech figure shows the temperatures derived for no insulation and for insulation
thicknesses of 0.25 and 0.50 inch attached to the inner surface of the shield.
The general effect of insulation in this area is to lower panel temperatures
and to increase heat shield temperatures. Insulation thickness for the monoco-
que waffle concept was selected to maintain the 1600°F meterial limit and to
minimize temperature level differences in the spanwise direction to lower
thermal stresses. Accordingly, based on the temperatures at FS 2366 shown in
these figures, an insulation thickness of 0.25 inch is used from the leading
edge to BL 341, & thickness of 0.12 inch is used between BL 341 and BL 268,

and no insulation is used with the heat shield from BL 268 to BL 232, The
remeining inboard lower surface is unshielded. Application of these results

to the entire wing is shown in figure 9-5. The 0.25 inch insulation is used
from the leading edge inboard to a line 34 inches from the edge and running
parallel to it. The 0.12 inch insulation covers from this line to three-
fourths of the distance to the inboard edge of the heat shield. This distance
varies because the inboard heat shield edge follows roughly a line under the
forward upper surface slope break, which does not parallel the leading edge.
The entire lower surface is shielded outboard of BL Li2 to protect against
higher surface temperatures due to shorter leading edge distances in this area.

Isotherms for the monocoque waffle primary structure and heat shield are
shown in figures 9-6, 9-7, and 9-8 for the -0.5g, +2.0g, and cruise flight
conditions, respectively. Since the analysis method for the 30 wing locations
used to derive the isotherm temperatures did not account for insulation effects,
temperatures in the shielded area were adjusted for insulation by using the
curves in figures 9-2 through 9-4. Dashed lines shown on the lower surface
are located under the upper surface slope breaks, shown with solid lines on
the upper surface diagram. Some lower surface isotherms are located along
these dashed lines, reflecting the influence of sharp temperature differences
between differently sloped sections of the upper surface. The heat shield is
shown displaced from its position covering part of the lower surface for
illustration clarity. The effect of the heat shield on the temperatures of
both surfaces is illustrated particularly at BL 442. Comparison of the
temperatures of unshielded areas of the monocoque waffle wing with the radi-
ation equilibrium isotherms shown in the aerodynamic heating section, section
3, substentiates the trend to overpredict temperatures when transient effects
are neglected during peak heating. The transient analysis of the momocogue
waffle concept predicts temperature for the upper surface at the -0.5g
condition and for the lower surface at the +2.0g condition that are 100°F to
200°F below the steady-state predictions of the radiation equilibrium analysis.
At cruise, however, both methods predict similar temperatures because of the
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near steady-state heating conditions. The results of the isotherm analysis
were used on the redundant model stress program to determine stress levels
over the wing.

To aid in the selection of spar and rib cap configurations, an analysis
was performed to determine temperature gradients in the fuselage-wing inter-
section area of the monocoque waffle structural concept. The thermal model
was similar to the gross model approach at this location with the following
additional details (see figure 9-9): (1) a small section (15 inches) of the
fuselage skin was included in the analysis to determine fuselage temperatures
at the intersection corner and their effect on wing temperatures; (2) upper
panels and the fuselage section were divided into several nodes to determine
panel temperature variations; the effect of the fuel tank inside the fuselage
was estimated with an approximate thermal model of an insulated cryogenic tank.
The single shear joint beam caps and the double shear joint upper cap at BL 120
were heated by radiation heat transfer from the internal structure and by
aerodynamic heating when applicable. Conduction from panels to caps is of a
small order compared to radiation at high temperatures, and was therefore
neglected to yield conservative results for panel to cap temperature gradients.
Figure 9-9 shows temperatures for panels, beam caps, and webs at FS 2345
between BL 90 and BL 143 for three flight conditions. The temperatures at the
right of the figure are arranged schematically to refer to the circled node
locations on the sketch at the left of the figure. Temperature variations on
the upper surface panel are 10°F over a distance of approximately 15 inches at
the panel center. Panel to beam cap temperature differences at BL 120 are
under 70°F for the two transient conditions and at cruise. These temperature
variations occur over a distance of about 5 inches across the-panel. Pesk
temperature differential between the fuselage skin and the upper cap at BL 120
occurs at the +2.0g condition and is 96°F over a distance of about 3 inches.
The penel to cap temperature differences derived at BL 90 and BL 143 are typi-
cal for the wing structure under the fuselage and on the "flat" (parallel
surface) portion of the wing, respectively.

Panel and rib cap temperatures at the insulated outboard location between
BL 321 and BL 365 at FS 2366 are shown in figure 9-10. Insulation thickness
is 0.12 inch between BL 321 BL 341 and 0.25 inch outboard. Temperatures derived
from the gross model approach are shown for the -0.5g, +2.0g, and cruise flight
conditions. Mid-panel to cap temperature differentials are below 50°F for all
conditions except for the upper caps at BL 321 and BL 343 during -0.5g (BL 321
cap is 60°F cooler then adjacent psnel at BL 332 and BL 343 caps is 75°F cooler
than adjacent penel at BL 354) and the upper cap at BL 365 during +2.0g and
cruise (60°F hotter than adjacent penel at BL 354). Peak differentials at
-0.5g are caused by peak heating on the upper surface and the temperature
response lag of the cap due to its greater mass per exposed area. The differ-
ential between the upper panel at BL 354 and the upper cap at BL 365 during
+2.0g maneuver is also caused by the response lag of the cap as the upper
structure cools from its peak temperature condition at -0.5g. This differential
is meintained through cruise.



A detailed thermal analysis was performed to determine local stresses and
deflections due to temperature gradients through the panel structure. Typical
results of the transient analysis of detailed waffle panel structure are shown
in figure 9-11 for an inboard location (BL 166) and in figure 9-12 for an out-
board surface waffle skin and stiffener tip are shown from take-off (time equal
zero) to mid-cruise (time equal 40 minutes). The outboard location temperatures
are based on using a heat shield with 0.25 inch insulation for thermal protec-
tion. During the climb portion of the trajectory (first 20 minutes), temper-
ature increases for both the waffle skin and tip are regular for both surfaces
at the inboard and at the outboard locations. Thermal gradients across any of
the panels are under 70°F. During the trajectory perturbations at the end of
climb, large gradients (over 150°F) are experienced by some panels, and these
are detailed below. After the perturbations, panel gradients stabilize
rapidly to values under 65°F. Thus, from take-off to mid-cruise the peak
thermal gradients as well as peak temperatures occur at the ~-0.5g or +2.0g
condition, and these have correctly been defined as the thermally critical
conditions.

Pesk panel gradients at the critical conditions and the stabilized values
at cruise are shown in figure 9-13 for four wing locations at FS 2366. Panels
under the fuselage (BL 60), at the inboard location (BL 166), at an outboard
location without insulation (BL 258), and at the insulated outboard location
(BL 350), were analyzed. Panel gradients at BL 350 are shown also for the ,
case of no insulation. Temperature differences from waffle skin to stiffener °
tip and from stiffener base to tip are shown. Because of relatively small
mass and large exposure aree, the skin portion of the waffle is more sensitive
to peak transient heating than the stiffener. Thus gradients from skin to
stiffener tip are generally higher than those from stiffener base to tip during
the trajectory perturbations. The largest gradients for the upper surface
occur at the outboard (forward wedge) locations during the -0.5g condition,
end for the lower surface at the inboerd (unshielded) locations during the
+2.0g condition. The major effects of removing insulation at BL 350 are to
diminish peak upper surface gradients slightly for the -0.5g condition and to
increase all panel gradients at +2.0g and cruise substantially.

%




HONEYCOMB-CORE SANDWICH CONCEPT

A detailed transient thermal analysis was conducted to determine locsal
stresses and deflections caused by temperature gradients through the panel
structure. Figures 9-14 to 9-17 show structure and heat-shield temperatures
for the lower surface insulation outboard arrangement. Additional temper-
ature and thermal gradient data are shown in table 9-1 for the three flight
conditions. During the structural sizing, various combinations of face
thicknesses, core densities, and sandwich heights were considered to minimize
the panel thermal gradients. As indicated in table 9-1, the largest thermal
gredient (323°F) occurs at the +2,0-g maneuver condition on the wing lower
surface panel under the fuselage.

SEMIMONOCOQUE SPANWISE CONCEPTS

Analysis of the semimonocoque primary structure concepts were conducted
with the same procedures outlined for the monocoque waffle structural concept.
A gross model analysis, assuming flat uniform panels, was used to determine
mean temperature histories for the primery structure and the effects of vary-
ing insulation thickness in thermelly protected areas. Isotherms based on
analysis at 30 wing locations were developed for both surfaces of the wing for
various combinations of heat shields and insulation. Analyses were performed
for detailed thermal models of the various semimonocoque panel concepts to
determine local stresses and deflections due to temperature gradients through
the panel structure. The gross model and isotherm analyses for the semi-
monocogue structure are applicable to both the spanwise stiffened and chord-
wise stiffened concepts, but are presented only in the spanwise concepts
discussion and referenced in the chordwise coucepts section.

Preliminary temperatures determined from the radiation equilibrium
anelysis indicated that thermal protection is required at the outboard and
forward wing areas to limit primary structure temperatures to 1600°F and
to control thermal gradients. To determine the extent of thermel protection
required for the semimonocoque concepts, the variation in structure temper-
atures with insulation thickness and heat shield placement wag examined at
one fuselage station (FS 2366) from BL 240 to BL 360. These temperatures,
derived from the gross model analysis, were examined at the -0.5g condition
to observe upper surface meximums, at the 2.0g condition to observe lower
surface meximums, and at mid-cruise to observe near steady-state effects.

The gross model assumed flat structural panels with an equivalent weight
thickness of 0.029 inch for all semimonocoque concepts. Heat shields were
assumed to be 0.0ll-inch flat sheets of Rene' 41, and insulation meterial

was 6.0 lb/ft3 Dyna-Flex. Figures 9-18, 9-19, and 9-20, show temperatures
along FS 2366 for semimonocoque panels and upper and lower heat shields at
the three flight conditions. Figures 9-21, 9-22, and 9-23, show temperatures
for the same conditions but with a lower surface heat shield only. Each of
the figures shows temperatures derived for no insulation and for insulation
thicknesses of 0.25 and 0.50 inch attached to the inner surface of the shield.
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The general effect of insulation in this area is to reduce structural
penel temperatures and to increase lower surface heat shield temperatures.
The most noticeable effect occurs as insulation is increased from none to a
thickness of 0.25 inch. The resulting temperature change is more than twice
the additional change caused by increasing the thickness from 0.25 to 0.50 inch.
At the transient conditions (-0.5g and 2.0g), insulation reduces lower panel
temperatures more severly than upper panel temperatures, and affects upper
heat shield temperatures less than either parel. This non-uniform change in
temperatures through the structure may cause temperature lines to cross, as
seen in figures 9-18, 9-19, 9-21, and 9-22 for the insulation cases. The un-
insulated transient cases and all cases during the steady-state conditions of
cruise show a normal temperature progression from one external surface of the
structure to the other. The effect of deleting the upper heat shield is most
noticeable on the upper panel. Upper panel temperatures are hotter by 1000
to 150°F at the -0.5g condition for the cases without an upper surface shield.
At cruise, upper and lower panel temperatures are cooler by 500 to 100°F with
no upper heat shield, due to direct radiation relief to space for the upper

panel.

Placement of insulation for the semimonocoque concepts was selected to
maintain the 1600°F material limit and to minimize temperature differences
in the spanwise direction and to control the gradient through the wing to
- match the fuselage gradient. Temperatures derived from the insulated
semimonocoque structures, either with or without an upper surface heat shield,
were based on the insulation placement shown in figure 9-24k. The cross
section at FS 2320 in this illustration shows 0.25-inch insulation used from
BL 212 to BL 258, and 0.50-inch insulation from BL 258 to the leading edge.

Isotherms for the semimonocoque primary structure concepts were derived
for three arrangements of heat shields and insulation. Figures 9-25 through
9-30 show primary structure and heet shield temperatures at the -0.5g, 2.0g,
and cruise flight conditions for the case with upper and lower heat shields
and no insulation. Figures 9-31 through 9-36 show structure and heat shield
temperatures for the same structure configuration and flight conditions but
with insulation per figure 9-24., Figures 9-37 through 9-42 show temperatures
for the arrangement with lower heat shield only and insulation per figure 9-24.



For each flight condition, structural panel temperatures are shown first and
then heat shield temperatures in the figure immediately following. Dashed
lines shown on the lower surface in each figure are located under the upper
surface slope breaks, shown with solid lines on the upper surface diagram.
Some lower surface isotherms are located along these dashed lines, reflecting
the influence of sharp temperature differences between differently sloped
sections of the upper surface. The effect of the fuselage on the wing is an
increase in upper surface temperatures near the fuselage-wing intersection as
radiation relief to space is reduced. General conclusions made upon examin-
ation of the isotherms for the different thermal protection arrangements are
the following: (a) upper surface (panel and heat shield) temperatures are
maximum at the -0.5g flight condition; (b) lower surface temperatures are
meximum at the 2.0g flight condition; (c) the effect of insulation at the
forward wing area is generally to reduce peak structural temperatures by

100° to 2509F and to increase lower heat shield temperatures by 500 to 1000F; and
(a) omitting the upper surface heat shield increases upper panel temperatures
at the forward section of the wing by 150°F during the -0.5g maneuver and
generally reduces all structure temperatures by 50° to 100°F at the other
conditions. The results of the semi-monocoque isotherm analysis were used

in the redundant model stress program to determine stress levels over the
wing.

To aid in the selection of spar and rib cap configurations, & parametric
analysis was conducted to determine the variation in panel-to-cap temperature
different with cap mass. Typical geometries for caps examined with the
semimonocoque structure are shown in figure 9-43. Cap mass is represented
by the cross section area of the channel cap plus the area of the end close-

out immediately above the cap. Total cross section area ranged from
0.2 to 0.8 square inch for a range of channel cap thickness from 0.030 to

0.125 inch. Temperature differences from mid-panel to an adjacent cap

were examined along FS 2366 from under the fuselage to the leading edge.
Except for surfaces experiencing peak heating conditions (upper surface at
-0.5g and lower surface at 2.0g), temperature differentials are under 500F

at all flight conditions for the range of cap areas examined and a variety of
heat shield/insulation arrangements. Temperature differences are smaller
with the thinner caps, except that, at the steady-state heating conditions of
cruise, beam cap temperatures are independent of mass and depend more on
location (i.e., distance from the leading edge). For the transient peak
heating conditions on either surface, the differential from panel to cap is
generally above 500F because of the temperature response lag of the cap due
to its greater mass per exposed area. Figure 9-24 presents an attempt to
correlate temperature differentials during peak heating computed at a number
of locations with varying cap areas. Data are shown separately for surfaces
with a heat shield and for surfaces without a heat shield. Within a 300F
band (shaded in the figures), temperature differentials seem to be fairly
independent of panel location (upper or lower surface, inboard or outboard )
and of cap location (outboard, inbosrd, forward or rearward) relative

to the middile of the panel. Surfaces without a heat shield exhibit a greater
differential compared to those with a heat shield due to direct exposure to
aerodynamic heating.
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A detailed thermal analysis was performed to determine local stresses and
deflection due to temperature gradients through the spanwise stiffened semi-
monocoque panel structure concepts. Typical results of the transient analysis
for the tubular penel are shown in figure 9-45 for an inboard location
(BL166) and in figures 9-46 and 9-L7 for an outboard location (BL 300)
with and without insulation, respectively. Temperature-time histories are
shown from takeoff (time zero) to mid-cruise (time = 40 minutes). Both loc-
ations assume use of upper and lower heat shields. During cruise, in addition
to lowering structure temperatures, insulation reduces the overall temperature
gradient from the top of the upper panel to the bottom of the lower panel
(point & to point d). This temperature difference is 150°F for the insulated
concept (figure 9-U46) compared to 260°F for the uninsulated concept (Figure 9-LT).
The lower panel with insulation also shows a lower peak temperature (1370°F)
at the 2.0g maneuver compared to the sharp peak temperature (1630°F) for the
uninsulated panel. During climb, insulation delays heating of the lower panel
and causes a large temperature difference (350°F at time = 10 minutes) from
the top of the upper panel to the bottom of the lower panel. For the uninsu-
lated cases (inboard and outboard), this difference is under 100°F until about
15 minutes into climb. Peak temperature gradients across the individual panels
during climb are about 200°F for all cases except for lower panel of the insul-
ated arrangement, which shows practically no temperature difference until the end
of climb.

The temperature-time histories shown for the tubular panels are represent-
ative of temperasture histories for the other spanwise stiffened panel concepts
with both heat shields. The other concepts (beaded and trapezoidal corrugation),
however, have a single layer construction and exhibit less of a temperature
differential between the outermost end intermost points on the panel. Thus,
curves for temperatures on these panel concepts would lie between the curves
shown for the outermost and innermost points of the tubuler panel. A comparison
between detailed panel temperatures for all three spanwise concepts with temper-
atures derived in the isotherm analysis (using the flat, uniform panel assumption)
has shown that mean panel temperatures serived from both analysis methods are
within 25°F for all flight conditions.

Panel gradients at the critical flight conditions (-0.5g und 2.0g) and
at cruise are shown in figures 9-48, 9-49, and 9-50 for the tubular
trapezoidal corrugated, and beaded panels, respectively. Temperature

differences are shown in each case for three locations at FS 2366: under
the fuselage (BL 60). inboard wing (BL 166), and outboard wing (BL 300).
All cases assume upper and lower heat shields, and the outboard location is
shown for no insulation and for insulation thicknesses of 0.25 and 0.50 inch.
Panel graidents at the cited flight conditions are LO°F or less for the
trapezoidal corrugation and under 20°F for the beaded. These low gradients
are the result of the single-layer construction of these panel concepts.
The tubular panel is of double layer construction and exhibits gradients
up to 155°F at the 2.0g condition. The effect of insulation at the
outboard location for all the spanwise stiffened concepts is generally to
reduce the temperature differentisl across the outboard panel, except
during the -0.5g condition on the upper surface where the differential
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almost doubles for 0.50-inch insulation compared to no insulation. These
gradients were used to evaluate local thermal stresses and deflections in
the panels and their effect on the overall stress levels of the wing.

SEMIMONOCOQUE CHORDWISE CONCEPT

The parametric insulation analysis, panel-to-spar and-rib cap gradient
analysis, and the isotherms developed for the semimonocoque primary structure
are generally appliceble to both the spsnwise and chordwise stiffened concepts,
and have been shown in the spanwise concepts section. Of particular interest
for the chordwise concept are the previous curves which show the effect of
insulation on structure temperatures with a lower heat shield only (figures
9-21 to 9—23), and the curves which present isotherms (figures 9-37 to 9—&2)
for the semimonocoque structure with & lower heat shield only. These curves
are applicable to the chordwise stiffened concept which utilized an unshielded
upper surface convex-beaded panel and shielded lower surface, and were used
in the redundant model stress program to determine stress levels over the
wing for this concept.

A detailed thermel anslysis was conducted for the chordwise stiffened
concept to determine local stresses and deflections due to temperature
gradients through the panel structure. Figures 9-51 and 9-52 show temperature-
time histories for the concept using convex-beaded upper surface panels and
tubular lower surface panels with a lower heat shield. Temperatures are
shown from takeoff to mid-cruise for an uninsulated inboard location (FS 2366,
BI, 166) and an insulated outboard location (FS 2366, BL 300). For both
locations, temperatures increase rapidly through the climb portion of the
trajectory, peak sharply during the maneuvers at the end of climb, then
settle gradually to cruise values. At the outboard location, lower panel
temperature peaks are attenuated at the 2.0g condition by the insulation,
but the convex bead on the upper surface undergoes direct peak heating at
the -0.5g condition and its temperature peaks sharply. The start of the
bead near the leading edge experiences additional high local heating due to
the ramp effect of the bead closeout. An estimate of 25 percent increase in
the local heat transfer coefficient due to a 3-degree maximum chordwise slope
at the closeout yields & locel temperature increase of 90°F at the ~-0.5g
condition.

Panel gradients at the critical flight conditions (-0.5g and 2.0g) and
at cruise are shown in figure 9-53 for chordwise stiffened panels with a con-
vex beaded upper surface. Temperature differences across the panels are
shown for three locations at FS 2366: under the fuselage (BL 60), inboard
wing (BL 166), and outboard wing (BL 300). A lower surface heat shield is
assumed, and the temperature for the outboard location is shown for no
insulation and for insulstion thicknesses of 0.25 and 0.50 inch. Temperature
differentials through the lower panel for this concept are almost identical
to those for the spanwise tubular concept because of configuration similarity
of the lower surface. The convex beaded upper surface, however, is directly
exposed to the airstream and panel gradients for the outboard area are double
at -0.5g and 50 percent higher at cruise compared to the shielded tubular
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upper panel. The effect of insulation at the outboard location is generally
to reduce temperature differentials across the panels, except for the upper
surface at the -0.5g condition where the differential increases from 115°F
for no insulation to 162°F for 0.50-inch insulation.

STATICALLY DETERMINATE CONCEPT

Heat shields covered all exposed surfaces and three thermal-protection
srrengements were considered: (1) no insulation, (2) insulation on the
lower surface from § to BL 212 (Areas A and B), and (3) insulation at the
lower surface outboard of the one-third wing chordline.

The second thermal-protection arrangement (inboard) was included to
investigate structural temperatures even lower than 1600°F to provide
minimum-gage penel designs, since the spanwise loads were low. Because of
noncontinuous ribs asnd the allowsble wing rotation at the fuselage, wing-to-
fuselage temperature compatibility is less important in this concept.

Detailed transient thermal analyses were conducted for the thermal-pro-
tection arrangements to determine local stresses and deflections from
temperature gradients through the panel structure. Average panel temperatures
for the candidate thermsl protection arrangements are presented in tables 9-2
through 9-5.

Tsotherms used for the redundent model input were for the heat shielded
and no insulation arrangement. These isotherms are identical to those shown
for the semimonocoque spanwise in figures 9-25 through 9-30.
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TABLE 9-1

HONEYCOMB SANDWICH TEMPERATURES AND THERMAL GRADIENTS a,b

TABLE 18. - TEMPERATURESa AND THERMAL GRADIENTS FOR MONOCOQUE
HONE YCOMB-CORE SANDWICH PANELS WITH OUTBOARD LOWER SURFACE
HEAT SHIELD AND INSULATION

(]
Loading Wing panel e Face sheet temperature, F
condition location m TB1760 | BL166 | BL 258 | BL 350
T; 980 1312 1588 1661
Upper T, 1055 1225 1386 1416
AT -74 86 201 244
_0- 5_g
AT 95 41 21 17
T, 1166 1286 1396 1403
Lower T, 1260 1327 1416 1420
Tys - - 1366 1425
T, 1007 1172 1362 1409
Upper T, 1077 1252 1409 1443
AT -70 -79 -47 -33
+2.0-g
AT 323 257 122 18
T, 1211 1323 1434 1437
Lower T, 1534 1579 1557 1456
THs - - 1693 1828
T, 1240 888 946 945
Upper T, 1276 1107 1137 1085
AT -35 -219 -191 -139
Cruise
AT 28 120 104 84
T, 1298 1215 1241 1149
Lower T, 1326 1335 1344 1233
Tgs - - 1402 1494

a. Insulation and heat shield at outboard lower surface.

. b. ‘Symbols:

T

To
AT

THS

| | S | I

external face sheet temperature
‘internal face sheet temperature
Ty - T2
heat-shield temperature

Maximum temperatures are underlined.
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Fuselage upper € temperature

BL BL BL BL
120 166 02 304
C Typical vehicle cross-section
- Fuseloge upper € temperature
- e Fuselage upper € temperature -
Y T
€ -BL 120

Avesage fuselage gradient

Average fuselage gradient

Fuselage Fuselage .
- Fuselage.-wing
Fuseloge-wing juncture juncture
R BL
0 +
- 1
BL BL
W 166 W 166
ing —_— ing 3,
. BL 30T N ! . BL ?*'?‘\\ BLIM
1200 1400 1600 1200 1400 1600

°
Temperature, F

Thermal-protection orrangement — heat shield Thermal-protection arrangement — heat shield
fower surfoce outboard of one-third chordline, and insulation fower surfoce outhoard of

no insulation one-third chordline

Figure 9-1. Wing-fuselege cross-section temperatures for candidate
thermal protection arrangements at +2.0-g condition
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Average fuseloge gradient

Fuselage
Fuselage-wing juncture
BL 212
1 BL 166
Wing
_BL 304
1 1 —

1200 1400 1600

Temperature, °F

Thermal-protection arrangement — no heat shield,
no insulotion

R Fusel

ge upper € temp e ¥

Fuselage upper € temperature

¢ -BL 120

®

" Average fusefage grodient Average fuselage gradient

Fuselage Fuselage-wing juncture

Fuselage

%
Fuselage.wing
juncture

\\\\*=:~~--~ BL 304 ~33~<BL 304

N NN R

1200 1400 1600 1200 1400 1600
Temperature, °F

Temperature, °F
Thermal-protection arrangement — heat shiald
on entire lower surface, insulotion lower
surface outboard of one-third chordline

Thermal-protection arrangement — heat shields on entire lower
surface, no insulotion

Figure 9-1. Wing fuselage cross-section temperatures for candidate
thermal protection arrangements at +2.0-g condition (Continued)
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Lower panel

——————— reat shield
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—
oa; L— g |~ /// - ’/
- e - — - 1
2 4 - — 17 A
E - — q- / —/// o —
[ — F—
& - /
g 13 //// ////
12 /
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fl No insulation 4 .25 in. insulation 4 .50 in. insulation
O 1 I | 1 -l | 1
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Butt line at FS 2366

. Figure 9-2., Temperatures at -0.5-g condition for outboard monocoque
waffle panels and heat shield vs insulation thickness

19 x 100
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// A - //
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15 < -
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///j/ A ' /,4//
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12

Temperature,

Al? No insulation { .25 in. insulation li" .50 in. insulation
0 | | - | |

]
240 280 320 360 240 280 320 360 240 280 320 340
Butt line at FS 2366

Figure 9-3, Temperatures at +2.0-g condition for outboard monocogque
3 waffle panels and heat shield vs insulation thickness
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Upper
surface

Lower
surface

Heat shield
{displaced for clarity)

Temperatures in -

Figure 9-6. Wing isotherms at -0.5-g condition for monocoque waffle
~ panels with partial lower heat shield and insulation
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Upper
surface

Lower
surface

Heat shield
(displaced for clarity)

Temperatures in _°F

Figure 9-7. Wing isotherms at +2.0-g condition for monocoque waffle
panels with partial lower heat shield and insulation

Upper
surface

Lower
surface

Heat shield -
(displaced for clarity) —

Temperatures in O

Figure 9-8. Wing isotherms at cruise condition for monocoque waffle
penels with pertial lower heat shield and insulation
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G i
K 4

e Cross section at FS 2366

® Monocoque panels with single shear joint beam caps

1455

Upper cap =0.5 g condition

- - 1515
Upper panel —

Web —

Lover panel

1560
Lower cap
’ |
Insulation - . Lol
: T 1455
Heat shield —F ~—-1395 1410 "TT1395 T 1440
1420
+2.0 g condition
- 1520
1
=~ N U N
~— 1440 S 1460 Tl 1440 N 1465 - 1485
Cruise condition
-—- 1040
1125

.12 in. insulation 4—-I——D .25 in. insulation

Figure 9-10. Panel and beam cap temperatures in °F at outboard
area for monocoque waffle concept
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L A
280 320 360

Figure 9-18. Temperatures at -0.5-g condition for outbdard semimohocoque paneis.
with upper and lower heat shields vs insulation thickness
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Butt line at FS 2366

| Figure 9-19. Temperatures at +2.0-g condition for outboard semimonocoque panels
with upper and lower heat shields vs insulation thickness
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Figure 9-20. Temperatures at cruise condition for outboard semimonocoque panels
with upper and lower heat shields vs insulation thickness
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Figure 9-21. Temperatures at -0.5-g condition for outboard semimonocoque
panels with lower heat shield only vs insulation thickmess
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Upper surface panels
/]50

Lower surface panels

Temperutures! inl OF‘

Figure 9-25. Panel isotherms at -0.5-g condition for semimonocoque panelé

with upper and lower heat shields and no insulation

Upper suréace
heat shield

Lower surface
heat shield

Temperatures! in] °H

Figure 9—26. Heat-shield-isotherms at -0,5-g condition for semimonocoque

panels with upper and lower heat shields and no insulation
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Upper surface
panels

Lower surface
panels

Temperatures in °F

Figure 9-27. Panel isotherms at +2.0-g condition for semimonocoque panels

with upper and lower heat shields and no insulation

Upper surface
heat shield

Lower surface
heat shield

. 9
Temperatures in - F

Figure 9-28. Heat-shield isotherms at +2.0-g condition for semimonocoque
panels with upper and lower heat shields and no insulation
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Figure 9-29. Panel isotherms at cruise condition for semimonocoque panels
with upper and lower heat shields and no insulation

- \350 g
Upper surface "
heat shield \Qcp

950!

Lower surface
heat shield

Temperatures in °F \

Figure 9-30. Panel isotherms at cruise condition for semimonocoque panels
with upper and lower heat shields and no insulation
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Temperatures in °F

Figure 9-31. Panel isotherms at -0.5-g condition for semimonocoque panels
with upper and lower heat shields and partial insulation

Upper surface
heat shield

Lower surface
heat shield

emperatures in F

Figure 9—32. Heat-shield isotherms at -0.5-g condition for semimonocoque panels
with upper and lower heat shields and partial insulation
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Figure 9-33. Panel isotherms at +2.0-g condition for semimonocogque pénels

with upper and lower heat shields and partial insulation
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Figure 9-34. Heat-shield isotherms at +2.0-g condition for upper and lower

heat shields with semimonocoque panels and partial insulation
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Figure 9-37. Pznel isotherms at -0.5-g condition for semimbnocoque panels
with lower heat shield only and partial insulation
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””3 Figure 9-38. Heat~-sghield isotherms at ~0.5-g condition for semimonocoque
’ panels with lower heat shield and partial insulation
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Figure 9-39. Panel isotherms at +2.0-g condition for semimonocoque panels
with lower heat shield only and partial insulation
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Y Figure 9-40. Heat-shield isotherms at +2.0-g condition for semimonocoque
panels with lower heat shield and partial insulation

2-43



Upper surface
ponels

Lower surface
panels

Temperatures. ‘in ¢

Figure 9-41. Wing isotherms at cruise condition for semimonocoque panels
with lower heat shield only and partial insulation

2

Lower surface
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Figure 9-42., Wing isotherms at cruise condition for semimonocoque
panels with partial insulation and lower heat shield
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Figure 9-43. Typical geometries of beam cap studies for semimonocoque
primary structure thermal analysis
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Section 10
OPTIMIZATION PROCEDURE FOR PANELS OF
MONOCOQUE STRUCTURE
by
R. E. Hubka
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SECTION 10

" OPTIMIZATION PROCEDURE FOR PANEIS OF MONOCOQUE STRUCTURE

Equations of the two computer programs which were used to design the
panels of the monocoque structure are presented in this section. The analyses
are formulated for the synthesis concept of structural optimization. A
general optimization subroutine is used in the programs to direct a constrained
minimization of the weight of the structure. The mathematical procedure of
the subroutine, which is not presented, is based on the maximum gradient method.

STRESS ANALYSIS PROCEDURE OF COMPUTER PROGRAM NO. 1

A typical panel is shown in figure 10-1. Neglecting coupling between
inplane and out-of -plane deformations, the extensional and shearing strains
of the plate are:

3 - - ( A
( €x i1 T T3 Ny
R L Foo Fog $ Ny b (10-1)
c T/ R /o 0w /D N
l xy 13’ 23 337 Xy
Ji L _i \ J1l

in which ¢ = vy_ /2 and
xy xy

-1
€11 G 203

[Fl = | Cp Cpy 2Cng
C c o0

13 23 33

10-1



The stiffness coefficients with plasticity effects included are evaluated
with equations of reference 10-1l. The subscript i denotes number of loading

condition. It is to be noted that the coefficients C13 and 023 are zero for

all plates except the 45° x 45° waffle (fig. 10-2) when an unequal amount of
plastic deformation occurs in the £-wise and n-wise stiffeners.

Assuming plane sections before loading remain plane after loading, the
cap stresses are

fcap,l,i - Esec, cap,2,ife,i (2 = x,y) (10-2)

The extensional stress resultants of the plate are

-1
Nx All A12 B1
= (10-3a)
N, Bog Aol 1B
i i i
where
= +
All,i Lp,y Acap,xEsec,cap,x,iFll,i
A12,i = Acap,xEsec,cap,x,iFlE,i
A21,i - Acap,yEsec,cap,y,iFlE,i
(10-3Db)
= + F .
A22,i Lp,x Acap,yEsec,cap,y,i 22,1
B, . = LN ,-A E F N .
1,1 ¥y ox,i cap,Xx sec,cap,x,i 13,i xy,i
B,. = LN ., -A E F N .
231 X Yy,1 cap,y sec,cap,y,t 23:1 Xy ,1

Expressions of the stiffener and skin stresses of the O x 9Oo waffle
(fig. 10-3) are

f . = E LE, .
w,2,1 sec,w,%,i £,1

(2 = X:y) (lo'ua)

10-2



and
( ) [1 0 (e, ]
sec,s,1 {
( f > bl Sot: S AV} 1 0 € >
¥,S 1 - v2 ] S y
s,1
f 0 0 1 - v €
L Xy9S) i L L_i L }cy‘
or

(£}, = [cs] e},

where the subscripts s and w denote skin and stiffener.

(10-kb)

(10-ke)

The effective

Poisson's ratio of the above equations is expressed as follows (ref. 10-2);

v = 0.5 - nsec (0.5 -V

e1)

Strains of the 450 x 450 waffle of figure 10-2 are (ref. 10-3)

i

eg 0.5 0.5 1 EX

€ ={ 0.5 0.5 -1 €

n y

€ -0.5 0.5 0 €

&En Xy).

or
{E'}i = [T]{E}i

Expressions of the stiffener and skin stresses are

f . = E LE
w,l,1 sec,?,i *,1

(2 = &,n)

Yo o

10-3

=

(10-5)

(10-6a)

(10-6b)

(10-Ta)




PN

and

B r = (£, = [cs i} (e}, (10-Tb)

The skin stresses in the xy coordinate system are
_1 ' — -
£}, = (T {r N (10-8)

The material properties of the faces of the honeycomb core sandwich
{fig. 10-4) are assumed to be equal., Hence, the expression of the skin

~stresses is the same as that of the 0 x 90° waffle, equation (10-kc).

Expressions of the core stresses of the truss-core sandwich (fig. 10-5)
are

f = E

y,C,i sec,c,iey,i
(10'9);
Esec c,i
—_— bl 3
sy,c,i T Ty € i cos 0

Cyel

The face stresses are given by equation (10-ke).

Tt is to be noted that Computer Program No. 1 automatically iterates the
stress analysis when a significant amount of plastic deformatjon occurs.
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IOCAL INSTABILITY ANALYSIS PROCEDURE OF COMPUTER PROGRAM NO. 1
‘0 x 90° Flanged Waffle

The buckling stress of the 0 x 90° biaxially-compressed waffle skin element,
which is assumed to be simply supported, is expressed as follows (ref. lO-h):

b a.\°
2 _8 S
2 m o, T o,
Es i tg < 8g s /i
f . = 0.82 (10-10)
Lys,cr,i 1 _v2 . (asbs)i 5 bg ag
s,1 — + B
a b
S S i
where
85,1 = Py = By g0 Pg 4 =Dy =ty 4o By = fy,s,i/fx,s,i’ =X
if
X,S,1 fy,s,i
and
8g,i = Px = tu,x> Ps,i =Py - ty,y> Bi = fx,s,i/fy,s,i: L=y
if

fy:s:i > fX,S,i

The effective modulus is approximated with the expression

E = [Cl ngp *+ (1 - c,) nr] E, (10-11)

in which (ref. 10-5)

E n 1/2
t
Ngr = EST =05 ngee [E 00 é_+.3 n an)
el sec (10-122a)
n = E_r = n <l + 3 ntan \) :
r B 0.25 ‘sec Moo / B (10-12b)
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and C1 (o <C 5_1) is an empirical coefficient, dependent on the loading

1
and aspect ratio of the plate. Some guidance for evaluating the empirical
coefficient is given in reference 10-1. The effective Poisson's ratio is

definedby, equation (10-5). The buckling stress of the skin is the minimum

of fk  or with respect to positive integers of m. Negative or zero values
3 H

of the denominator of the buckling equation are not applicable. Note that

f is the correct buckling stress only when
L,s,cr

max(f ., T ) = f
X,S,1 ¥,5,1 L,s,cr

The shear buckling stress of the skin is (ref. 10-L4)

Es-i bs - ts Y
Tayasper,i = 0082 5 5.3+ M) [ {5 (10-13a)
2,

1 -V s
o1

in which the dimensions of skin are now denoted as follows:

(10-13b)

E and v are defined by equations (10-11) and (10-5), respectively.

Using the interaction equation

where

=
I

C,s fl,s/fl,s,cr
= f f
XY »8 Xy ,S] X¥y,S,CTr

the utilization factor for combined shear and biaxial "compressive" loading
of the skin is expressed as

10-6



. . r .
U - C,5,1 C,S,1 Xy ,5,1 (lO-l)-l-)

Treating the stiffener web as a plate which is elastically supported
along the flange side and simply supported along the other three sides,
stable equilibrium of the stiffener web and that of the stiffener as a whole
can be expressed by a single transcendental equation (ref. 10-6).

An alternate to using the transcendental equation is to design the stiffener
so that (1) the stiffener web can be treated as a simply supported plate,
and (2) general instability of the stiffener does not occur. The latter
procedure, which is somewhat simpler, is considered to be adequate for the
present minimum weight analysis. The two conditions are satisfied if

(ref. 10-6):

Tp .,y 2 max (Ilal, 12,2) (2 = x,y) (10-15a)
in which
3
: (b >
= 1 | f,%
I == —| 2 (2 = x,y) (10-15b)
£,2,% 12 Zo tw,l
A, D
TQ | = 1.85 + 2.73—§£%&—&~ (2 = x,y)
° fw,l
(10-15¢)
P t 2 A P t 2
— - P -
I, ,=1.18 _m_ vLm o.h;) + 047 + o.h3_§£%£_& —4%15—3555
’ Ze £, 0 £
(2,m = X,y; ¥,%)
where
Be o = Pr g br /2, (2 = xy)

(10-16)
z. = 0.5 (tS + tf) + b

10-7



Note that the subscripting of the expression of fo s denotes one equation

Lo

in which & = x and m = y and another equation in which £ = y and m = x.

The buckling stresses of the stiffener webs are then expressed as

where

2
[hW'/(pm - tw,m) * (pm - tw,m)/hW] > (pm - tw,m)/hw <1
(Q/’m = x’y; y’x)

Considering one half of the flange element as a plate with three simply
supported edges and one free edge, the local buckling stresses of the flanges

are expressed as follows:

E .
= 0.80 —STa¥sl,l

fe gier 2 0.61 (1 -V

wn.3)

| puta— |

(10-18)

(e,m = x,y; ¥,x)

This equation corresponds to that of reference lO-h, the formulation of which
is based on v = 0.25.
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In addition to the flexural modes of failure already considered, a
torsional mode of instability of the flanged stiffener is possible. Assuming
simply supported boundary conditions at the ends and unrestrained rotation
about the toe of the stiffener web, the buckling stress is expressed as
(ref. 10-6)

E .
tan,w,2,1

= 9.87
(L/r)i

fst,Q,cr,i (2 = x,y) (10-19a)

where

1/2
Toe,2

(L/r) =<p -t )
'3 m w,m -2 2
Ist,z,lzf oyt O'OBQOJst,R (pm - tw,m)

(e,m = x,y; y,x) (10-19b)

in which the stiffener properties are defined as follows:

4
4

(10-19¢)
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The properties A?'Q and Ef are defined by equation 10-16, and

Aw,g =h tw,ﬁ/pz (2 = x,y)

2
T,y = 8y hw//12 (2 = x,7)
(10-20)
Ty g = By = 05 <ts + hw)

2 2

S M S T Re e e (2 = xv)

st,2 6 (1 + v 24

3 W,z

0 x 90° Unflanged Waffle

The equations for the buckling analysis of the skin element of the un<
flanged 0 x 90° waffle are the same as those for the flanged waffle, equations
(10-10), (10-13) and (10-14). Considering the stiffener as a plate with three
simply supported edges and one free edge, the buckling stress of the stiffeners
is expressed with an equation corresponding to equation (10-18) as follows ¢

E .
R £ C = 0.825TaW 21 [ g (1 - v .)
e g w,l,cr,i T w,oi,1
; ; S 91 |
: "
h - t c ’
W, % W, _
+ 'p -t h (Q’m = X,¥5 y,X)
\"m W,m W, 4 (10-21)

Note that the above equation is written with the provision for hw X # h
2

W,y
which is permissible for some desigis in which the stiffener stresses in

one direction are small or tensile. The height of the stiffeners in this
direction can be larger than that of the stiffeners in the other direction. :

450 x 450 Waffle

A specialized form of equations (10-10) through (10—21) is used for the
local instability analysis of the flanged and unflanged hSQ x 459 yaffles.

10-10



Honeycomb—Cbre Sandwich

/ Procedures for the analysis of local instability of honeycomb-core sandwich
plates’ subjected to uniaxial cempressive loading are presented in reference 10-7.
_ Some;of these analytical methods are adapted herein for the local instability
analysis of the honeycomb-core sandwich subjected to combined loading.

. The basis of the intercell buckling (dimpling) expression of reference 10-7
 is the’classical buckling equation of a square plate. Using the notation of

. figure 10-U4, the intercell buckling stress of the faces due to biaxial inplane

loading is expressed as i

2 5 2
B min (tl t2> ( ~ o+ 1)
f._ . = 0.82C 5,1 2 = (10-22)
IB,i 1 2 s 2
1-v . m. + B.
s,1 1 i
where
By =T 5/T1.1
in which
5 1/2
f + [/% - f \ ]
I N LR x,s ~ v.s) .2
I 2 L\ 2 / Xy ,S J
5 1/2
f + f - T ;
X,s ¥ ,S X,S ¥,Ss 2
f = - + £
1T 2 2 »S

The critical stress is the maximum value of fIB with respect to positive

2 .
integers of m. Negative or zero values of m + B are not applicable.
Unequal face thicknesses are considered to provide for different minimum
thickness requirements of the faces. Comparing equation (10-22) to that of
reference 10-7 for uniaxial loading, it is noted that C; = 0.61.
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The wrinkling stress of the faces due to uniaxial compressive loading
is expressed as (ref. 10-T)

E .h
s,i ¢
+ O.6hKi

EC imin(tl,tz) 1/2
0.82C, 2 E

b]

r
VR, T (10-23a)

where C, is a correction factor, Er < is the effective skin modulus expressed
by equa%ion (10-12b), and >

%i (10-23b)

60 of equation (10-23b) denotes the amplitude of initial imperfection of the

thinnest face.

The core modulus EC and allowable strength Fc’ which appear in equations

(10-23), are properties which are measured perpendicularly to the sandwich
plate. These properties are usually evaluated experimentally. However,
when new materials are initially considered, test data, especially for high
temperature applications, is not available. Therefore, it is necessary to
approximate the properties analytically. Assuming the compressive strength
to be critical, the crushing load carried by the core is considered in two
parts, prebuckling 1nad and pnsthuckling load. The buckling stress of the
foil (side of a cell) is conservatively expressed by simply supported plate
theory as

EST c,i tc e i
£! . = 0.82k =22~ = (10-2ka)
CcC,1 1 - v )

c,li
where
S hC ° hC
nts ) cs ©F
X = C
L : B S
— 1
s =

10-12



% M¢

in which hC =h - tl - t2. EST.c and VC are effective properties of the

core material given by equations” (10-12a) and (10-5).

After the foil buckles, additional loading is carried by the material
at the core nodes. The average stress produced by the post-buckling loading
of the effective material is

", =1 R (10-2kb)
c,1 c,max,1 c,1

in which f is the stress corresponding to n = 0.1. The compressive
c,max tan,c

strength of the core is then expressed as

_ 2t 2b_
Fooo=—<(f + === g" (10-25)
c,i s c s c
where
b_p = min (c3tc + 0.54, chs>

in which C3 and Ch are empirical coefficients.
_ The secant modulus of the core corresponding to the compressive strength
FC is approximated as

sf' .+ 2p f" . E¥ .
o - ot c,i ef” c,i sec,Cc,i
c,l c T . 2
c,max,i s

(10-26)

where E*ec o is the secant modulus of the core material which corresponds
b

to the stress f .
c,max

The following values of the C coefficients, d and 60 were used in

0.61, C 1, C

the design of the honeycomb~core sandwich plates: C = 15,

o 2~
Ch'= 0.25, 4 = 0.025 and 50 = 0. In reference 10-1, a comparison of
analytical data, which were obtained with the above values, with test data
of reference 10-8 indicates that the reported analyses of dimpling and
wrinkling stresses are adequate for the present investigation.

[

3

V]
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Truss-Core Sandwich

v , Treating the face and core elements as long, 51mply supported plates, the
truss-core sandwich is analyzed for local instability with the theory of ref-
erence 10-9, an analysis of long, simply -supported, orthotropic plates. The. .
face buckling stresses, when the loading components act individually, are

- 2
ES 5 min <t t )
f . = 0.82 2
x,s,cr,i 1 - v2 ‘ bS
5,1 L -
- W2
ES 5 min <tl,t2)
£ o op.g = 3429 5 = (10-27)
Y sS H 1 = v . L s
s,i .
-~ 12
B Es,i min (tl,t2)
f = Jbo 5 =
Xy CTy 1 - v i g ]
s,1
Defining stress ratios as
rvn-§=fvc1/fven'w'|
bt Rad Rd I~ 9=/ “m3= 3= 3~
Ty,s,i fy,8,i/Ty,s,0ri (10-28)
r 9

. f ./f .
Xy ,8,1 Xy ,8,1/ Xy,S,Cr,1

and specializing the interaction equation of reference 10-9 to an isotropic
plate as
. l+;)| - 6_;’)+2;)r =2
6 (Fitn,) = (o ) ) -

10-14
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the utilization factor US of the thinnest face for combined loading then is
determined with the procedure of figure 10-6. Note that stable equilibrium of
the face exists if ¢ > O,

The core is subjected to a compressive loading in the y-direction and
a shear loading. Expressions of the corresponding buckling stresses are

E . [t 2
8T,c,i c
f . = 3.29 —
T¥sc,cr,i 1 - v2 . bc
c,i
(10-30)
E [t 2
ST,c,i c
. = bhbho =222 —
Sy.,c,Ccr,i 1 - v2 bc
c,i
where EST o and v, are effective material properties of the core element
b

which are expressed by equations (10-12a) and (10-5), respectively. The inter-
action equation for combined loading is

2
R (10-31)
in which
r = f /f
C,C y,c y,C,CI‘
(10-32)

r f /f
sy,C sy,c/ sy,c,cr

Tt is to be noted that equation (10-31), for the combined loading of the core,

igrequivalent to equation (10-29). The expression for the factor of utilization
or strength ratio for the interaction equation (10-31) is

1/2

. tir + 4r
U o= (10-33)

The true margin of safety, then, can be computed from the following equation

MS. = L& -1
un
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GENERAL INSTABILITY PROCEDURE OF COMPUTER PROGRAM NO. 1

. ~Assuming simply supported boundary conditions, the compression buckling
b theory of reference 10-10 and the shear buckling theory of reference 10-11,
e together with an appropriate interaction equatien, are used to analyze the

waffle, honeycomb-core sandwich and truss-core sandwich plates for general
vlnstablllty.

{.«l

% The compressive buckling load for a biaxially-compressed, simply supportéd
orthotropic plate (ref. 10-10) is

2 2
Npoeri = %e,i™ Proi/*11,4 (10-3ka)
] 2 H 9 H
where
% 5
% X D, .
- I,i 3,1 + m2 o+ gt
x2 D, i)7i 1 x2
11,1 ? 1T.1
ko1 = = 5 — (10-34D)
? X N . X .
m? N I,i IT1,i I,i
i 2 NI 5
*11,i >
in which
X D 1/h
1,1 II.,i
B, 1= = 2L - 21 (10-3ke)
’ 11,i \ 1,1

The dimensional, loading, and stiffness quantities of eguation (10-34).are
defined as follows:
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if

Otherwise,

=a;N.=ﬁ N

Xp 3 = P 1, - N i Mpr s T Wy 35 Pps 00 30 P17 T Py g

*I1,1

. The plate stiffnesses Dj,Dp,and D3 are evaluated with equations of referenceilo-l.

Etan is used for the modulus of the stiffeners of the waffle and the core

elements of the truss-core san&wich: The moduli of the faces of the

honeycomb-core and truss—core sandwiches are approximated with equation (10-11).
The expression

B = [C2 nST * (l - C2) ntan] Eel

is used to evaluate the moduli of the skins of the 0 x 90° and L5° x L45°
waffles, The coefficient 02 (O 5_02 j_l) is an empirical coefficient

dependent on loading and aspect ratio of the plate., Some guidance for
evaluating the coefficient is given in reference 10-1.

The buckling load of the plate is the minimum value of NI or with
3

respect to positive integers of m., Negative or zero values of the denomin-
ator of equation (10-34b) are not applicable. Not that Ni cw is the correct

buckling load only when NI =z NI,cr'

The shear buckling stress of the plate is (¥ref. 10-11)

1/4
N . = k a2(p. D3 . < (10-36)
Xy, cr,i s,1 I,i711,1 TT.4
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where

I,i  T1,i* TII,i 2,i

if

L l
b \Y D 1/
bf71l,i c 22,1
=y
& D2,1 Dl,i
Otherwise,
Xp g T Ps Xpp s =83 Dp s =Dy s Dpp 3 =Dy

Values of the shear buckling coefficient which correspond to those given
by the theory of reference 10-11 are presented in reference 10-12. Curves of
the coeéfficient are given in figure 10-8 of this section. The stiffness param-
eter, «, of the figure is defined as )

_ 1/2
“1 7 D3,i/(Dl,iD2,i> (10-372)
and ithe effective aspect ratic as
N
*rr,if P11 '/ .
B, ;s = —=| 52— (10-37b)
i I,i IT,1

The procedure for evaluating the stiffnesses D

Dgsand D, is the same as
that for compressive loading.

1’ 3
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Using the interaction equation

in which

.= N, .
Rc,l I,l/NI,cr,l

R .=1X ./N .
Xy,1i Xy ,if Xxy,cr,i

the utilization factor for combined shear and biaxial compressive loading
of the plate is

(10-38)

In evaluating the loading ratios of equation (10-38), one set of stiffnesses
in which the effective moduli are based on the stress state due to the com-~
bined compressive and shear loads is used.

Using a general instabillity theory, which neglects shear deformation, sig~
nificantlylimits the extent to which Computer Program No. 1 can be applied to |
honeycomb-core plate problems. Hewever, in the nresent investigation, the sim-
plified analysis did not have a significant effect on the plate weight becguse
the compressive loading along the long edges of the panel was considerable:with
respect to that along the short edges. i

OPTIMIZATION PROCEDURE

Equations which were used for the stress and stability analysis of the
waffle, honeycomb-core sandwich and truss-core sandwich plates have been pre-
sented. Tor each of the structural concepts, these equations, together with
constraint functions which remain to be given, define a "region" of permis-
sible design within an nth order "design space" in terms of the design
varisbles. The coordinates which make the merit (weight) function assume
a minimum value and which fall within the permissible design region are the
dimensions of the optimum configuration for a given single OTr multiple load-
ing condition. As already stated, the modification of the structure in
~searching for the optimum design is directed by a constrained minimization
procedure, which is based on the "maximum gradient" method.

10-19
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The variables which are used in Computer Program No. 1 are the dimensions
of the plates as follows: R ¢

0 x 90° Flanged Waffle

b

= dt
f,x’ bf,Y’ h( By vt ¢ tf)’ Py> Pys beo oo tex Yy

0 x 90° Unflanged Waffle

-45° x L45° Flanged Waffle

= + ;
o, h( B+t o+ tf), D, to, t, and t

-45° x L45° Unflanged Waffle

h<£ h o+ ts), p, t_ and t_

Honeycomb-Core Sandwich

s S, tc, tl and t2

Truss-Core Sandwich

h, t, by, t, and 0
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Ceei oo 000 The constraints of the design space which have been incorporated into ;

" Computer Program No. 1 can be grouped into two types: (1) behavioral constraints
and (2) side constraints. The first type limits the design to those coﬂfigura-
' tions which satisfy the failure criteria of the structure. The second type
constrains the design,for example, within real space limitations and manufac-
tUrihg (tapabilities. As an example of the system of constraints of Computer
Program No. 1, constraint functions of the unflanged 45° x 45° waffle program

are:
o Ca006oh
= - >
Gl,l 1 UGI,l 0
= - =
G2,i 1 Us,l 0
G3,i =1- fw,l,i/fw,ﬁl,cr,i z 0 (¢ = g or n)
i Gh,i = "tan,s,i - "tan,min,i >
= — = f
GS,i ntan,w,l,i ntan,min,i z (2 £ or n)
G6 =1t -t . >0
s s ,min
G, =t -1t . =0
T W w,min =
= - > ES
G8 <hw/tw) max hw/tw =0

It is to be noted that in the design of the 45° x L5° waffle,only the stiffener
with the maximum compressive stress is analyzed for buckling.

ANATYTTCAL PROCEDURES OF COMPUTER PROGRAM NO. 2 B

As already indicated, only the wnflanged 15° x 15° and 0 x 90° waffle
plates and the honeycomb-core sandwich plate are considered in Computer Program
No. 2. The program system was developed from the programs of Computer Program °
No. 1. Hence, many of the procedures for designing the unflanged waffle and
honeycomb-core sandwich plates are common in the two program systems, the basic
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. differences being in the analysis of the overall strength and the local failur%
of the waffle plates. The analytical procedures which are peculiar to Computer
Program No. 2 are presented on the following pages. ?

Stress and Deflection Analyses of Waffle Plates

The total in-plane stress resultants acting on the 450 x 450 waffle panel

L
DsY

———

. =N' . + (AE . . L + € + 3
X,1 X,1 ( sec,leT,l)cap,x/ C,y <Cllax,T,plate Cl2€y,T,plate)i Lc v
b

.= N' . + [AE Em . T+ P + £ X
Ny,l y,i < sec,laT,l)cap,y/ C,X (clzex,T,plate C22€y’T,plate>i LC <
9

(10-39)

N =N' . +C . .
Xy Xy sl 33,1 YXY:Tal

where N;, N§ and Niy are stress resultants in which the thermal loading is

excluded and the subscript T denotes thermal strain. In the 0 x 90° waffle

. . . _ -1 _ -1
program, 012 in equations(10-39) is equated to Zero,Cll = Fll and 022 = F22
The procedure for evaluating the thermal portion of the loading is consistent
with the analyses of the internal loads of the aircraft. Using the loads given

by Equations(10-39),the total stress resultants of the plate, ﬁy and N_, are

determined with the use of equations (10-3).

Moments due to coupling between insplane and out-of-plane deformations
of the =459 x U5° and O x 90° waffles are .

Ml 0 e N
‘M! - X — 12 _X
1" le,i M X e o |.)WN (10-k40a)
y)e,i 21 i v .
1 i
{
where e and e are eccentricities which are properties cof the plates as

defined in referénce 10-1.The coupling moments occur as force couples (skin
forces opposing stiffener forces) in the waffle plates. Edge moments of
-{M}c are superimposed on the plates to remove the couples from the edges of
the plates, which are assumed to have simply supported boundary conditions.
The moment sign convention is shown in figure 10-9.

10-22
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Moments due to eccentric loading at the edges of the plate are

MX NX e

' = * (10-LO0b)
M N e

J e,l vy

were ex and ey are prescribed eccentricities.

Moments due to variation of temperature through the thickness of the plate
are determined with the use of superposition of loading. The temperature gra-
dient is assumed to be linear, which is considered to be an adequate approxi-
mation for the present investigation. Considering the plate first with free
boundary conditions, curvatures due to the temperature gradient, which is
assumed to be constant aleng the width and length of the plate, tlén are
X = X =X, The curvatures, which have sign convention as shown in

x,T y,T T

figure 10-9. are removed with the application of moments along the free edges
of the plate. The moments are

M D,, D X
{14} X =T 12 T (10-40c )
T, M D D22 XT
Y L 12 1 1
where Dll l s D22 = D2 and Dl = xb 2 = Vyb D1 are the bending stiffness

coefficients of the waffle plates. The desired plate loading is finally obtained
by imposing simply supported boundary: eonditionsg onto the plate and then super-
imposing the moments - {M}p along the edges.

As already staged, Computef’ Pipgram No. 2 Was 1mplemented for problems ‘in
which the plate bows so that the moments .at the center of the panel are adeguate
approximations of the maximum moments. Assuming- thatjmxy constitutes a negligible

portion of the panel loading with respect to general failure, the deflection
and bending moments at the center of the plate due to the coupling moments, the
eccentrlc loading at the edges, the temperature gradient through the thlckness
and the "compressive" edge loads arc expressed as follows (ref. 10-13 and 10-1k):

16 A - 2] e
R B Wl Y o T (S
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2,1 zz zg 1 (mﬂ)2 nﬂ>2
M' | = 2 _ . (— + M (— (l()—l#lb) l
vt " g mu [Mx’l > LD
m+n
-1
- mm) 2 nm\ 2 n
[ (B @ 0 7 g,
(m=l, 3,.. .,M.M;n l, 3""’NM’MM_NM)
where
= D (ﬂ\h +2 ., (BT (r—"> (10-k2)
mn,i 1,i \a ) 3,1 (a > b
s () B E, ()
2,1 \b X,1 \a y,i\Db
and
MX < Mx MX
y - -, + -1y (10-43)
Yii v)c,i vle,i yIT,1

Deflection and moments at center of plate due to
uniform pressure are

M N
16g., 2 @9 ntn ,
3 1 2 -
wl = = (-1)
i 2 A .
m & f=1 mn,i
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o v
=
=

=

+

=
1
l_J

w' = 21t 2 (ﬁﬂ) + v (31>2 (-1) i
X,i w2 :S 22 X a yo \5/ |-

N ) mtn _, (10-4hp)
16qiD2 ;i qg g 1 2 2 2
M" = —_— ;;- M + am (_l)
y,i ™2 A xb \a b
&1 &1 m,i |

Deflection and moments at the center of plate due to inplane edge loads
and an initial sinusoidal deflection are '

=
o
-
[}
|
o
[
[}
[
> O
F“H
= e
- [
——
e}
[
—_———
o=
N——
N
+
|
<
“l—’
—
ol =3
S—
N
| SRS |
—
e
o]
SN—
i |
<
o’
ul—’
——
o] =
S—
| Y
—~
'_l
o
]
=
N
~—

0= ot (T (2 T B [P ()
¥,.i 11,1 All 5 x,i \a y,i (b> xb,i\a
3

in which ay, is the initial deflection and Xll is expressed by equation (10-42)

with m=n=1.

Using the secant modulus, the plate stiffnesses, which appear in the
deflection and moment equations, are evaluated with equations of reference 10-1.
Poisson's ratios Vo and vy of the skin and stiffeners in the stiffness

equations are approximated with equation (10-5).It is conservatively assumed
that the elastic-plastic state at the center of the waffle exist over the
entire area of the waffle plate.

The total deflection and the total moments at the center of the plate
are

w.o=w' +w' o+ w"
i i i i

(10-k6a)
"

M, o+ M+ M,
X X,1 X,1

\Vv\:
S
=
x
“r—'
i
=
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Moo= M L +M Lo+ M
¥l Yl Yl Yl

(10-L6b)

M _.=0
Xy, 1

The effective curvatures and twist corresponding to the above moments
are

(% \ _Dll P1p 0 17 {aex ]
‘xy ¢ = | Dpp D, 0 ﬁMy b (10-47a)
LXXle i 0 0 2D33— i | Mxyjl
Strains of the reference surface are
(2, | 1y Cip O 1 (T, ] [enop o I Cy Cs 0] [«
+ Ey = Cip Cop O gl-\-ly > = |Cy5 Cop O Coy Cpg O 1%y y (10-LTD)
LO'5§nyi _-0 0 2033_1 nyji ;o 0 2?33Ji i 0 0 2C35_i \Xnyi

where the stiffness coefficients are evaluated with equations of reference 10-1.
Secant moduli corresponding to the stresses of equations (10-49) are used in

computing the stiffnesses.

The Cij stiffness coefficients are formulated with respect to the mid-

plane of the waffle skins. Average strains of the waffle skin then are

{ 3 - 3
Ex [

e~y =4¢c¢ \ (10-48a)
NS NS

L0-5ny s,i O°5ny,1
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The stiffener cross section is subdivided into five equal increments for the
stress analyses of the waffle plates. For the O x 90° waffle, the average
strains of these increments are

0.5 t, + (0.2k - 0.1) hw,Q] lei

(£ =x,y; k=1, 2, 3, &, 5)

(10-48b)
Expressions of the skin and stiffener stresses are
fx 1 vs 0] €4
OF S ¥ 1P NI B )
v 1-v? [ v (10-Loa)
s,1 oa
£ . 0 0 1- . . .
L XY JsS,1 L ?é 1 LO SYijsgl
= . E .
fw,ﬂ,,k,i ESEC,W,Q,k,l L,w,k,1

(2 = x,y3 k =1, 2, 3, 4, 5) (10-49b)

Stresses of the caps are computed with equations (10-1) and (10-2)

Using strain and curvature components in the gn-coordinate system, the
d stiffoner stresses of the U5% x L5° waffle are obtained in the same

2lr S e -
DN Lll QUL O ULl Llvilcl wuilCouoos wa

manner as those of the 0 x 90° waffle. The transformation equation for the
deformations is

5 B
osg‘ ' osg‘
-5Y 7 ' [o 5% i
T
Xn Xy
\ Xen Ji | *xy i

where the submatrix [T] is the same as that of equation (10-6b)
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Local Instability Analyses of Waffle Plates

The skin buckling analyses of Computer Program No. 1 are used in Computer
Program No. 2. As already stated, a conservative, simplified procedure is used
for the stiffener buckling analyses in Computer Program No. 2. Consider first
the 0% 90° waffle. The stiffener buckling stress due to uniform loading is.
computed with the same equations as used in Computer Program No. 1. The stresses

Y
]

fw,x max <fw,x,k)

= (k = 3,5)
f max (f
W,y . W’Y’k> i

i

as obtainedin equation{(10-49b) are compared with the buckling stresses to deter-
mine if stable equilibrium of the stiffeners exists. Effective moduli corre-
sponding to the above stresses are used in the computation of the stlffener
buckling stresses.

The stiffener buckling analyses of the L45° x 45° waffle are the same as
those for the O x 90° waffle. :

Analytical Procedures for Honeycomb-Core Sandwich Plate

The equations for determining the deflection and moments of the honeycomb-
core sandwich plate are the same as those for the waffle plate, except the -
coupling moments due to. extensional and bending deformation are not 1nvolveﬁ.
The faces of the sandwich are analyzed for local buckling with the procedure

of Computer Program No. 1. ”

Constraints
The constraints of Computer Program No. 2 are the same as those of Com-

puter Program Ne. 1, except that a deflection constraint, which was not used
after initial development of the program system, replaces the general insta-

bility constraint. Tn addition, the constraints of the honeycomb-core sandwich : .

program were expanded to provide separate load dependent constraints for each
of the two faces.
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Truss core

Figure 10-5.

Geometry of truss-core sandwicn plate
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Right hand rule:

z, =W, =9
Y y
hAyx M
X .
'My 0 x 90° waffle (shown)
’ / or ~45° x 45° waffle
M ,
X
MX)’ P S > M
M
{ X
X
s
M
Y
M
y %
Expressions of curvature and twist: ’
Xx—— 2 XY_— 2 xxy——axay
ax ay

—

/
/

Figure 10-9., Sign convention of deflection, moments and pressure 1oadix\g/

and expressions of curvatures and twist of waffle plate /
/
/
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